IRON, RUTHENIUM, AND OSMIUM

ANNUAL SURVEY COVERING THE YEAR 1971

J. A. McCLEVERTY

Chemistry Department, The University, Sheffield (Great Britain)

CONTENTS

Carbonyl, carbonyl phosphine and related complexes			352
Mononuclear species	-		352
Polynuclear species		-	353
Species containing bridging N, P or As atoms	-	-	357
Species containing bridging S, Se or Te atoms	•	-	361
Species containing Si, Ge, or Sn atoms			364
Species containing Zn, Cd or Hg atoms		-	366
Carbonyl, phosphine and related hydride and halide complexes of FeII, RuII and OsII			367
Other carbonyl species			369
Isocyanide complexes			370
Nitrosyl complexes	•		371
π -Cyclopentadienyl and related carborane complexes			373
Simple binuclear species		•	373
Cationic species	•		375
Halide and related complexes			377
Complexes containing P, As or Sb donor ligands			378
Complexes containing S, Se or Te donor ligands		-	380
Electrochemical studies			380
Alkyl, olefin and related species		-	381
Complexes containing Group IIIB elements			387
Compounds containing Si, Ĝe or Sn atoms			391
Compounds containing Hg atoms			392
		-	392
Monoolefin species			392
Non-cyclic diene complexes			393
Cyclic diene complexes			398
Cyclic tri- and tetra-ene complexes			399
Bis-olefin complexes			405
Azulene and acetylenic derivatives			406
Allyl, dienyl, and trimethylenemethane complexes		-	407
Allylic complexes		-	407
Dienvl complexes			411
Allene complexes		-	412
Trimethylenemethane complexes			412
Arene and related complexes	-		413
Cyclobutadiene complexes		-	416
Metal alkyl, aryl, and related species	-		417
Carbene complexes	-		477
Synthetic and catalytic processes	•		422
References			427

Carbonyl, carbonyl phosphine and related complexes

Mononuclear species. The IR spectrum of crystalline $Fe(CO)_5$, obtained¹ by vapour condensation at 200 K, has been measured. The Raman-active A'_1 and E'' vibrations, and the totally inactive A'_2 mode were observed, presumably because of "site symmetry" activation; a new assignment of the vibrational spectrum was proposed. Ion-molecule reactions involving $Fe(CO)_5$ have been studied² by ion cyclotron resonance spectroscopy. The ICR spectral data were in agreement with previous results³, and the ions $[Fe_2(CO)_4]^+$ and $[Fe_2(CO)_5]^+$ were also detected. In the reaction between $Fe(CO)_5$ and MeF, at the highest methyl fluoride pressures, only one CO group was replaced by MeF in $[Fe(CO)_n]^+$ (n = 1-4), and $[Fe(CO)_5]^+$ was inert towards substitution. Other products detected in this reaction were $[MeFe(CO)_4]^+$ and $[MeFe(CO)_5]^+$. The reaction of $Fe(CO)_5$ with H_2O was extensive, and the species $[HFe(CO)_n]^+$ (n = 4 or 5), $[Fe(H_2O)(CO)_n]^+$ (n = 1-3), $[Fe(H_2O)_2(CO)_n]^+$ (n = 0-2) and $[Fe(H_2O)_3(CO)]^+$ were observed. The reaction with NH₃ was generally similar although no hydridic species were discovered. $Fe(CO)_5$ reacted with HCl to give, as major products, $[HFe(CO)_n]^+$ (n = 4 or 5), and with benzene to give $[Fe(C_6H_6)(CO)_2]^+$.

The coupling constants ${}^{1}J({}^{57}\text{Fe}-{}^{13}\text{C})$ and ${}^{1}J({}^{57}\text{Fe}-{}^{31}\text{P})$ have been obtained from the appropriate NMR spectra of Fe(CO)₅ and Fe(CO)₄PEt_nPh_{3-n} (n = 1-3). It was concluded that the CO groups in these compounds underwent intramolecular exchange, since the observation of ${}^{1}J({}^{57}\text{Fe}-{}^{13}\text{C})$ excludes intermolecular exchange.

The ionisation potentials, photoelectron, and mass spectra obtained⁵ from $Fe(PF_3)_n(CO)_{5-n}$ (n = 2-5) showed that PF_3 is a poorer σ -donor but better π -acceptor (with respect to Fe) than CO.

Reaction of $Fe_2(CO)_9$ with Et_2NPF_2 afforded⁶ $Fe(CO)_4(PF_2NEt_2)$ and $Fe(CO)_5$, and with $(Et_2N)_2PF$, $Fe(CO)_4[PF(NEt_2)_2]$ was formed. Treatment of $Fe(CO)_4(PF_2NEt_2)$ with HX (X = Cl or Br) gave $Fe(CO)_4(PF_2X)$, and reaction of $Fe(CO)_4(PF_2Br)$ and $Fe(CO)_4(PFCl_2)$ with AgN₃ or AgNCS afforded $Fe(CO)_4[PF_2(N_3)]$ and $Fe(CO)_4[PF(NCS)_2]$, respectively. Reaction of $Fe_2(CO)_9$ with $E(NMe_2)_3$ (E = P or As) gave⁷ $Fe(CO)_4E(NMe_2)_3$.

The reaction between $Fe_2(CO)_9$ and $P(p-MeC_6H_4)_3$ (L), in which $Fe(CO)_5$, $Fe(CO)_4L$ and $Fe(CO)_3L_2$ were formed, has been studied⁸ by IR spectroscopy, and the effect of light, temperature and the presence of CO on the product ratios investigated. It was concluded that $Fe_2(CO)_9$ reacted by two different pathways:

$Fe_2(CO)_9$ (solid) \Rightarrow	$Fe(CO)_5 + Fe(CO)_4$	(slow)
$Fe(CO)_4 + L \rightarrow 1$	Fe(CO) ₄ L	(very fast)
$Fe(CO)_4 + CO \rightarrow 1$	Fe(CO) ₅	(fast)
$Fe(CO)_4 + O_2 \rightarrow 0$	oxidised product + CO	

The scheme explained previous observations⁹ that $Fe_2(CO)_9$ reacted with an excess of $C^{18}O$ to give 10-15% $C^{18}O$ in $Fe(CO)_5$, and that both $Fe(C^{18}O)(CO)_4$ and $Fe(C^{18}O)_2(CO)_3$ were present at the beginning of the reaction; the data did not support the intermediacy of $Fe(CO)_4$ in the formation of $Fe(CO)_3L_2$.

IRON, RUTHENIUM, AND OSMIUM

By using the potentially tri- and tetra-dentate ligands $EPh(o-C_6H_4EPh_2)_2$ [E = P(TP); E = As (TAS)] and $E(o-C_6H_4EPh_2)_3$ [E = P(QP); E = As (QAS)], the series $Ru(CO)_2(TP)$, $Ru(CO)_2(TAS)$, Ru(CO)(QP) and Ru(CO)(QAS) have been prepared¹⁰. Halogenation of Ru(CO)(QP) afforded $Ru(QP)X_2$ (X = Cl or I).

Polynuclear species. The IR spectra of UV-irradiated $Fe_2(CO)_9$ in matrices at 20 K revealed¹¹ the presence of both bridged and non-bridged forms of $Fe_2(CO)_8$. Photolysis in nitrogen matrices provided some evidence for $(CO)_4$ Fe $(\mu$ -CO)Fe $(CO)_3(N_2)$ and $(CO)_3$ Fe $(\mu$ -N₂) $(\mu$ -CO)Fe $(CO)_3$. There were strong similarities between frozen-gas (A or N₂) and solution IR spectra¹² of M₃ $(CO)_{12}$ (M = Ru or Os) and Ru₃ $(CO)_{10}(NO)_2$, and it appeared that for M₃ $(CO)_{12}$ the isolated molecules were somewhat distorted from idealised D_{3h} symmetry. The matrix spectrum of Fe₃ $(CO)_{12}$ was completely different to that in solution and indicated that the molecular structure in this situation and in the solid state¹³ were identical.

An atmospheric pressure synthesis of $Ru_3(CO)_{12}$, from $RuCl_3 \cdot nH_2O$, $EtOCH_2CH_2OH$, Zn and CO, has been described¹⁴, and a detailed mass spectral study of the carbonyl reported¹⁵.

The crystal structure determination of $Fe_3(CO)_9(PMe_2Ph)_3$ revealed¹⁶ that the three phosphine ligands were coplanar with the Fe_3 -triangle; the structure was otherwise similar to $Fe_3(CO)_{12}$ ¹³ with Fe–Fe distances of 2.69 and 2.54 Å. One of the products of the reaction between $Fe_3(CO)_{12}$ and $(Me_2As)_2C_4F_4$ (f₄ fars) contained¹⁷ a rearranged arsine ligand (I). The three $Fe(CO)_3$ groups and the AsMe₂ moiety are linked together at the corners of a tetrahedrally-distorted square plane. There was a long Fe–Fe bond (2.92 Å) involving the Fe atom bonded to the two As atoms, whereas the shorter Fe–Fe contact (2.67 Å) was associated with the Fe atom bonded to one As atom. The structure of $Ru_3(CO)_{10}[(Me_2As)_2C_4F_4]$, II, in which the diarsine is coplanar with the Ru_3 -triangle and bridges two metal atoms, has also been determined¹⁸.

 $Os_3(CO)_{12}$ is much less reactive¹⁹ towards $(Ph_2P)_2C_4F_4(f_4fos)$ and $(Ph_2P)_2C_6F_8(f_8fos)$ than either $Fe_3(CO)_{12}$ or $Ru_3(CO)_{12}$, although $Os_3(CO)_{11}(f_4fos)$, $Os_3(CO)_{10}(f_4fos)$

(analogous to II), $Os_2(CO)_6(f_4 \text{ fos})$, III, $Os_3(CO)_8(f_4 \text{ fos})$, IV, and $Os_3(CO)_{11}(f_8 \text{ fos})$ were isolated; no arsenic analogues of these or related²⁰ Fe and Ru compounds could be obtained.

Tentative assignments of the fundamental CO stretching frequency modes, obtained from solution and polycrystalline samples, and using IR and Raman spectra, have been proposed²¹ for Mn₂Fe(CO)₁₄, Re₂Fe(CO)₁₄ and MnReFe(CO)₁₄. Reaction of Fe₂(CO)₉ with PtL₄ or PtL₂(C₂H₄) (L = PMePh₂, PMe₂Ph, PPh(OMe)₂, P(OPh)₃, AsPh₃, or Ph₂PCH₂CH₂PPh₂) afforded²² PtFe₂(CO)₈L₂, V, or PtFe₂(CO)₉L, VI. With Ru₃(CO)₁₂, VII and VIII were formed, whereas Os(CO)₄H₂ reacted with PtL₂(C₂H₄) (L = PMePh₂ or PPh₃) giving IX and X. Other products isolated from these reactions included M₃(CO)_{12 -n}L (n = 1-3). None of the Pt-containing clusters obeyed the "rare-gas rule".

A second product formed²³ in the reaction between $Fe(CO)_5$ and $[Mn(CO)_5]^{-1}$ in diglyme (the first was²⁴ [MnFe₂(CO)₁₂]) has been identified as $[Fe_6(CO)_{16}C]^{2-}$, XI. The hexanuclear cluster contains 13 terminal and 3 bridging CO groups, and a central "carbide" atom; it may be compared with $Fe_5(CO)_{15}C^{25}$. Reaction of OsO₄ with CO in xylene at moderate temperatures and pressures afforded²⁶ Os₃(CO)₁₂, Os₄O₄(CO)₁₂

(XIII)

(XIV)

(XV)

and $Os_6O_6(CO)_{16}$. The last compound may contain an octahedral Os_6 unit, has no Os=O group and has only terminal CO groups.

 $Fe_2(CO)_9$ reacted²⁷ with $[(\pi-C_5H_5)Ni(CO)]_2$ to give $(\pi-C_5H_5)_2Ni_2Fe(CO)_5$, XII; there may be isomerism between XII and XIII in solution. In the reaction between $Ru_3(CO)_{12}$ and $[(\pi-C_5H_5)Ni(CO)]_2$, only $[(\pi-C_5H_5)Ru(CO)_2]_2$ was identified. The structure of $(\pi-C_5H_5)RhFe_3(CO)_{11}^{28}$, XIV, and $(\pi-C_5H_5)_2Rh_2Fe_2(CO)_8^{29}$, XV, have been determined crystallographically. In the former, the Rh–Fe distances were 2.57-2.62 Å, and the Fe–Fe distances 2.55-2.59 Å; because of the crowding of the ligands around the surface of the RhFe₃ tetrahedron, there were additional metal-carbonyl contacts which has the appearance of bridges. In the latter, the Rh–Fe and Fe–Fe distances were in the range 2.57-2.60 and 2.54 Å, respectively. There were two asymmetric CO bridges but the actual structure, within which no metal atom appears to obey the "rare-gas rule", lay between those idealised in XV. It would appear that the structure observed resulted from a compromise between the interligand (stereochemical) repulsions and the electronic requirements of each metal atom.

The molecular structure determination³⁰ of H_2 FeRu₃(CO)₁₃, XVI, confirmed the expected³¹ FeRu₃ tetrahedral cluster, and revealed the existence of asymmetric CO bridges; the Fe-Ru and Ru-Ru distances were in the ranges 2.63-2.70 and 2.78-2.92 Å, respectively. When H₂ was passed through an octane solution of $Ru_3(CO)_{12}$ at 90°, $H_4Ru_4(CO)_{12}$ was formed³². This compound has an IR spectrum different to that of α -H₄Ru₄(CO)₁₂³³. An attempt to repeat the synthesis of β -H₄Ru₄(CO)₁₂ afforded the new $H_4Ru_4(CO)_{12}$ and $H_2Ru_4(CO)_{13}^{33}$. Treatment of $Ru_2Fe(CO)_{12}$ with H_2 in refluxing hexane gave $H_4Ru_4(CO)_{12}$. Similar treatment of $Os_3(CO)_{12}$, with H_2 at 110° , afforded $H_2Os_3(CO)_{10}$ and $H_4Os_4(CO)_{12}$. $H_2Ru_4(CO)_{13}$ rapidly reacted with H_2 in boiling hexane to give $H_4Ru_4(CO)_{12}$, and with D_2 , $H_2D_2Ru_4(CO)_{12}$ was formed. Hydrogenation of H_2 FeRu₃(CO)₁₃ gave the unstable H_4 FeRu₃(CO)₁₂ which readily rearranged to $H_4Ru_4(CO)_{12}$. A series of trimethylphosphite derivatives of $H_4Ru_4(CO)_{12}$, $H_4Ru_4(CO)_{12-n}[P(OMe)_3]_n$ (n = 0-4) was prepared³⁴; only one CO group on each Ru atom was displaced. From the H NMR spectrum, it was apparent that each substituted species was prepared as only one (pure) isomer, and the molecules underwent an intramolecular rearrangement whereby ${}^{1}H-{}^{31}P$ coupling was averaged. Reaction of Ru₃(CO)₁₂ with CO and H₂ under pressure gave³⁵ Ru(CO)₅ and H₄Ru₄(CO)₁₂, identical to that

described earlier³³. Treatment of the hydride with PR₃ (R = *n*-Bu or Ph) under a variety of conditions afforded H₄Ru₄(CO)_n(PR₃)_{12-n} (n = 8-11).

Treatment of $Os_3(CO)_{12}$ with $[M(CO)_5]^-$ (M = Mn or Re) afforded³⁶ first $[Os_2M(CO)_{12}]^-$ which, on acidification, gave the polynuclear hydrides $HMnOs_2(CO)_{12}$, $HMOs_3(CO)_{16}$ (proposed structures XVII or XVIII), $HReOs_3(CO)_{15}$ (proposed structure XIX) and $H_3MOs_3(CO)_{13}$ (proposed structure XX). The structure of $H_2Ru_6(CO)_{18}$ has been elucidated³⁷; each Ru atom within the octahedron had three terminal CO groups and the two H atoms triply-bridged three Ru atoms on opposite (mutually *trans*) faces of the octahedron. There were six "long" (2.95 Å) and six "short" (2.87 Å) Ru-Ru distances.

Species containing bridging N, P or As atoms. UV irradiation of $Fe(CO)_5$ with 1-pyrazolines gave³⁸ XXI (R = Ph or i-Pr) whereas treatment of $Fe_2(CO)_9$ with 2,3-diazabicyclo[2.2.1] hept-2-ene afforded³⁹ XXII. Dialkylcarbodiimides reacted⁴⁰ with $Fe(CO)_5$ to give the species XXIII. The spectral information obtained from this compound was consistent with the formulation of the nitrogen ligand as a dehydrotrialkylguanidine moiety. Reaction with PPh₃ resulted in replacement of only one CO group, giving $Fe_2(CO)_2(PPh_3)[C(NR)_3]$. The mechanism of formation of the compound is depicted in Scheme 1; indeed, the generation of CNR was confirmed by the isolation

of $Fe(CO)_4(CNC_6H_{11})$. The diazapentadiene complex, XXIV, was obtained⁴¹ by reaction of the free ligand with $Fe_2(CO)_9$.

Scheme 1

The crystal structure determination of $Fe_2(CO)_6(RNO)_2$, where R = 3-chloro-2-methylnitrosobenzene, revealed⁴² that the compound could be described as either XXV or XXVI. The molecule was centrosymmetric with the two Fe and two N atoms

coplanar; the O atoms lay on either side of this plane in positions such that each was bonded to one Fe atom only. The complex could best be regarded as an N-bridged species, and was unusual in that no other such compound involves a planar Fe₂N₂ ring; all previously determined⁴³ Fe₂N₂ systems had Fe—Fe distances shorter, by 0.7-0.8 Å, than that reported here (3.13 Å, regarded as bonding).

Reaction of azobenzene (azbH) with $Ru_3(CO)_{12}$ afforded⁴⁴ XXVII, XXVIII and XXIX; reduction of the last with LiAlH₄ afforded azobenzene, and oxidation with bromine gave [Ru(CO)₂(azb)Br]₂. Ru₃(CO)₁₂ and o-semidine (semH₂) reacted together to give a series of complexes which were separated by chromatography. These included Ru₂(CO)₄(semH₂), XXX and possibly XXXI.

(XXVIII)

Treatment of $Fe(CO)_4I_2$ with LiN=CR¹R² (R¹ = R² = Ph or *p*-MeC₆H₄; R¹ = Ph and R² = t-Bu) afforded⁴⁵ [Fe(CO)₃N=CR¹R²]₂ and Fe₂(CO)₆I(N=CR¹R²); the Mössbauer spectra of these complexes were obtained. The C-C (1.38 Å) and C-N

(1.36 Å) distances in XXXII were longer⁴⁶ than those for uncoordinated C=C and C=N bonds, but were shorter than the C-C distances in the μ -allylic species⁴⁷ Fe₂(CO)₅(PPh₃)(H₂C=C=CH₂); the Fe-Fe distance in XXXII was 2.54 Å.

Scheme 2

Elimination of HX (X = halogen) occurred⁴⁸ in the presence of NHEt₂ in the reaction between Fe(CO)₄(PHPh₂) and $(\pi$ -C₅H₅)Fe(CO)₂Cl or $(\pi$ -C₅H₅)Ni(CO)I, the products being $(\pi$ -C₅H₅)(CO)₂Fe(μ -PPh₂)Fe(CO)₄ or $(\pi$ -C₅H₅)(CO)Ni(μ -PPh₂)Fe(CO)₄. UV irradiation or heating of these compounds gave the μ -carbonyl metal-metal bonded species $(\pi$ -C₅H₅)(CO)Fe(μ -CO)(μ -PPh₂)Fe(CO)₃, or $(\pi$ -C₅H₅)Ni(μ -CO)(μ -PPh₂)Fe(CO)₃. Reaction of $(\pi$ -C₅H₅)Fe(CO)₂Cl with Ni(CO)₃(PHPh₂) afforded $(\pi$ -C₅H₅)Fe(CO)₂. (μ -PPh₂)Ni(CO)₃ and eventually $(\pi$ -C₅H₅)Fe(CO)(μ -CO)(μ -PPh₂)Ni(CO)₂. Treatment of Mn(CO)₅Br or of $(\pi$ -C₃H₅)Mn(CO)₄ with Fe(CO)₄(PHPh₂) gave only (CO)₄Fe(μ -PPh₂)-Mn(CO)₄, in which there is a Fe--Mn bond. The reactions of $(\pi$ -C₅H₅)Co(CO)I₂ with Fe(CO)₄(PHPh₂) are outlined in Scheme 2, and Fe₂(CO)₆(μ -PPh₂)₂ was the only product formed in the reaction between Fe(CO)₄(PHPh₂) and $(\pi$ -C₅H₅)Ru(CO)₂Cl, $(\pi$ -C₅H₅)Cr(NO)₂Cl, $(\pi$ -C₅H₅)₂TiCl₂, M(PPh₃)₂Cl₂ (M = Ni or Pd) or M'(PPh₃)₂MeI (M' = Pd or Pt).

$$\begin{array}{c} 0 \\ C \\ OC \\ I \\ Fe \\ OC \\ I \\ As \\ C \\ O \\ Fh \end{array}$$

(XXXIII)

Reactions of Fe(CO)₅ with $(AsC_6F_5)_4$ afforded⁴⁹ Fe(CO)₄(AsC₆F₅)₂, XXXIII; the As-As distance (2.39 Å) was significantly shorter than that in (AsMe)₅ or (AsPh)₆ (2.43-2.46 Å) but longer than the As-As "double bond" (2.27 Å) in As₂Co₂(CO)₅-(PPh₃)⁵⁰. Treatment of Fe(CO)₅ with (PC₆F₅)₄ gave Fe₃(CO)₉(PC₆F₅)₂, XXXIV, and Fe₂(CO)₆(PC₆F₅)₄ (XXXV, E = P). Fe(CO)₅ reacted⁴⁹ with (AsR)_n (n = 5, R = Me or Et; n = 6, R = Ph) giving XXXV (E = As); with (AsPh)₆, Fe₂(CO)₆(AsPh₂)₂ was also obtained.

Species containing bridging S, Se or Te atoms. Reaction of $Fe_2(CO)_6(\mu \cdot SR)_2$ (R = Me, Et, t-Bu or Ph) with L (PR'₃, R' = Et, Ph, OMe; AsPh₃ or SbPh₃) afforded⁵¹ $Fe_2(CO)_5L(\mu \cdot SR)_2$ and $[Fe(CO)_2L(\mu \cdot SR)]_2$. With the bidentate ligands L-L (Ph₂PQPPh₂, Q = (CH₂)_n, n = 1 or 2; NEt; or C₂H₂; Ph₂As(CH₂)_nAsPh₂, n = 1 or 2) [{Fe(CO)_2(\mu \cdot SR)}_2-(L-L)], in which L-L bridged the two metal atoms, and [(CO)₃Fe(\mu \cdot SR)_2Fe(CO)(L-L)], were formed. Mössbauer and IR spectra were used to elucidate the structures of these

compounds. The syn-anti equilibrium in $[Fe(CO)_3(\mu-SR)]_2$ (R = Me, Et, n-Bu, Ph, C₆Cl₅ or C₆F₅) has been studied⁵². The two isomers of $[Fe(CO)_3(\mu-SR)]_2$ (R = alkyl) reacted⁵² at different rates with PR'₃giving the corresponding isomers of Fe₂(CO)₅-(PR'₃)(μ -SR)₂. The mixed isomers of $[Fe(CO)_3(\mu-SMe)]_2$ reacted⁵³ with L-L (f₄ fos or f₈fos) under mild conditions giving (CO)₃Fe(μ -SMe)₂Fe(CO)(L-L), whereas, at higher temperatures with L-L = f₄fos or f₄ fars, $[{Fe(CO)_2(\mu-SMe)}_2(L-L)]$ could be obtained. The polymeric $[Ru(CO)_2EPh]_n$, E = Se or Te, was obtained⁵⁴ by reaction of Ru₃(CO)₁₂ with E₂Ph₂, together with small amounts of $[Ru(CO)_3EPh]_2$. The polymers, XXXVI, existed in low molecular weight (n = 6-7) and high molecular weight (n = 12-14) forms.

Treatment of Fe(CO)₅ with $S_2C_2(CF_3)_2$ afforded⁵⁵ Fe(CO)₃ [$S_2C_2(CF_3)_2$] which, on reaction with EPh₃ (E = P, As or Sb), gave Fe(CO)_n(EPh₃)_{3-n} [$S_2C_2(CF_3)_2$]; Fe(Ph₂FCH₂CH₂PPh₂)[P(OMe)₂Ph] [$S_2C_2(CF_3)_2$] and Fe[P(OMe)₂Ph]₃ [$S_2C_2(CF_3)_2$] were also isolated. Similar ruthenium complexes, Ru(CO)(EPh₃)₂ [$S_2C_2(CF_3)_2$], (E = P or As), Ru[P(OMe)₂Ph]₃ [$S_2C_2(CF_3)_2$] and Ru[P(OMe)₃]₃ [$S_2C_2(CF_3)_2$] were obtained by treating Ru₃(CO)₁₂ with $S_2C_2(CF_3)_2$ and allowing the product to react with the appropriate phosphine, arsine or phosphite.

Reaction of $Fe_2(CO)_9$ or $Fe_3(CO)_{12}$ with SO_2 gave⁵⁶ $Fe_2(CO)_8(SO_2)$, XXXVII, whereas, with $[(\pi - C_5H_5)Fe(CO)_2]_2$, XXXVIII and XXXIX were obtained.

The molecular structures of $FeCo_2(CO)_9S^{57}$, $FeCo_2(CO)_9Se^{58}$ and $FeCo_2(CO)_9Te^{58}$ have been discussed and compared with those of $Co_3(CO)_9S$ and $Co_3(CO)_9Se$. These molecules contain a basic M_3E (E = S, Se or Te) tetrahedral unit, and all CO groups are terminal. The removal of one electron from the Co_3E unit, by replacement of one Co atom by an Fe atom, resulted in a large decrease of the M–M distances (by 0.083 Å in the sulfide and 0.039 Å in the selenide). $FeCo_2(CO)_9E$ (E = Se or Te) was prepared⁵⁸ by heating together, under CO pressure, $Co_2(CO)_8$ and $Fe_3(CO)_{12}$ with H₂Se or TeEt₂, respectively.

The preparation of $H_2Ru_3(CO)_9S$, by heating $HRu_3(CO)_{10}(\mu$ -SEt) in sulphuric acid, has been described⁵⁹ in detail. However, the reaction would appear to proceed⁶⁰ in stages (Scheme 3). Studies in D_2SO_4 indicated that neither $HRu_3(CO)_{10}(\mu$ -SEt) nor

$$HRu_{3}(CO)_{10}(SR) \xrightarrow{D^{\oplus}} [H^{\alpha}D^{\beta}Ru_{3}(CO)_{10}(SR)]^{+}$$

$$[D^{\alpha}H^{\beta}Ru_{3}(CO)_{10}(SR)]^{+}$$

$$\downarrow 100^{\circ}, D_{2}SO_{4}$$

$$HDRu_{3}(CO)_{9}S + \underbrace{D_{2}O}_{2}Ru_{3}(CO)_{9}S]^{+} + RDSO_{4}$$

Scheme 4

 $[H_3Ru_3(CO)_9S]^+$ underwent proton exchange in concentrated acid, but did so in more dilute solution (Scheme 4).

Species containing Si, Ge or Sn atoms. UV irradiation of Fe(CO)₅ and $(\pi-C_5H_5)$ -Fe(CO)₂SiCl₃ with SiHCl₃ afforded⁶¹ cis-Fe(CO)₄H(SiCl₃) and $(\pi-C_5H_5)$ Fe(CO)H-(SiCl₃)₂, respectively; with SiHPh₃, cis-Fe(CO)₄H(SiPh₃) was obtained. Reaction of Fe(CO)₄H(SiCl₃) with C₂F₄ gave [Fe(CO)₄(SiCl₃)]₂, and [Fe(CO)₂(SiCl₂)]₂ was obtained from this on heating *in vacuo*. Deprotonation of Fe(CO)₄H(SiR₃) R = Cl or Ph) in the presence of [Et₄N]⁺ led⁶² to the isolation of [Et₄N] [Fe(CO)₄(SiR₃)]. IR spectral studies of the reaction [Fe(CO)₄(SiPh₃)]⁻ + Fe(CO)₄H(SiCl₃) \approx Fe(CO)₄H(SiPh₃) + [Fe(CO)₄(SiCl₃)]⁻ showed that the equilibrium was well to the right and that Fe(CO)₄H(SiCl₃) was quantitatively the stronger acid. With SiCl₄, [Fe(CO)₄(SiCl₃)]⁻ afforded small amounts of Fe(CO)₄(SiCl₃)₂ which did not revert to the monosilyl anion in basic media. With SnCl₄, however, cis-Fe(CO)₄(SiCl₃)(SnCl₃) was obtained and this reacted with further [Fe(CO)₄(SiCl₃)]⁻ to give [(Cl₃Si)(CO)₄Fe]₂SnCl₂.

Reaction of SiMe₃I with Na₂Fe(CO)₄ afforded⁶³ XL (Y = SiMe₃) which, on hydrolysis with HCl, gave apparently the desilylated product XL (Y = H). Treatment of Fe(CO)₅ with (SiMe₂H)₂ provided⁶⁴ (CO)₃Fe(μ -CO)(μ -SiMe₂)₂Fe(CO)₃, which was stereochemically non-rigid. Halogenation of [M(CO)₄(SiMe₃)]₂ (M = Ru or Os) or [Ru(CO)₄(GeMe₃)]₂

gave⁶⁵ $M(CO)_4(SiMe_3)X$ or $Ru(CO)_4(GeMe_3)X$ (X = Br or I). Several of these compounds, and the corresponding Sn complexes, could also be obtained by selective halogen cleavage of the Group IVA-transition metal bonds in $M(CO)_4(M'Me_3)_2$ (M' = Si, Ge or Sn). Decarbonylation of the halides afforded isomers of $[M(CO)_3(M'Me_3)X]_2$, with X-bridges, XLI and XLII, which reacted with PPh₃ giving $M(CO)_3(PPh_3)(M'Me_3)X$, XLIII. Treatment of $Ru(CO)_4(SiMe_3)I$ with NaRe(CO)₅ afforded Me₃Si(CO)₄RuRe(CO)₅.

Reaction of $Fe_2(CO)_9$ with Me_3SiN_3 at room temperature gave⁶⁶ $Fe_3(CO)_{10}NSiMe_3$, XLIV; the Fe-Fe distances were 2.54 Å. Treatment of $M_3(CO)_{12}$ with Si_2HMe_5 , or of $M(CO)_4(SiMe_3)_2$ with Si_2HMe_5 , afforded⁶⁷ $[M(CO)_3(SiMe_3)(\mu-SiMe_2)]_2$, XLV (M = Ru or Os). However, reaction of $(SiHMe_2)_2$ with $[Ru(CO)_4(M'Me_3)]_2$, XLVI, (M' = Si or Ge) gave $Ru_2(CO)_6(\mu-SiMe_2)_3$, XLVII; with $Os(CO)_4H_2$ the cyclic $[Os(CO)_3(\mu-SiMe_2)]_3$, XLVIII, was produced.

The vibrational spectrum of *cis*-Fe(CO)₄(GeH₃)₂, obtained⁶⁸ by reaction of Na₂Fe(CO)₄ with GeH₃Br, has been reported. With an excess of GeHMe₃, Ru₃(CO)₁₂, at 80-100° in hexane, formed⁶⁹ *cis*-Ru(CO)₄(GeMe₃)₂ and [Ru(CO)₃(GeMe₃)(μ -GeMe₂)]₂, whereas with a slight excess of the germane, and using UV light, only Ru(CO)₄(GeMe₃)₂

was produced. $O_{s_3}(CO)_{12}$ was less reactive, but at 150° gave $O_s(CO)_4(GeMe_3)_2$, $[O_s(CO)_3(GeMe_3)(\mu-GeMe_2)]_2$ and low yields of $O_s(CO)_4H(GeMe_3)$. Using UV irradiation, the same products were obtained but there was no evidence for $[O_s(CO)_4(GeMe_3)]_2$. By heating $M(CO)_4(GeMe_3)_2$ (M = Ru or Os) at 160° , $[M(CO)_3(\mu-GeMe_2)]_3$ (whose structure, XLVIII, M = Ru, has been determined⁷⁰; Ru-Ru distances 2.93 Å) and $M_2(CO)_6(\mu-GeMe_2)_3$ were obtained. Sodium amalgam reduction of Ru(CO)_4(GeMe_3)_2 afforded [Ru(CO)_4(GeMe_3)]⁻ which, on treatment with XCl, where X = SnMe_3, AuPPh_3 or Re(CO)_5, afforded *cis*-Ru(CO)_4X(GeMe_3) (the Re complex was *trans*). Reaction of [Ru(CO)_4(GeMe_3)]⁻ with $(\pi-C_5H_5)Fe(CO)_2I$ afforded only Hg[Ru(CO)_4(GeMe_3)]_2, the mercury having originated from traces of amalgam present in the reaction mixture. Ru_3(CO)_{12} reacted with GeHCl_3 giving *cis*-Ru(CO)_4(GeCl_3)_2.

Species containing Zn, Cd or Hg atoms. IR spectral examination^{71,72} of MFe(CO)₄ (M = Cd or Hg) showed that the M atoms were linked to the Fe(CO)₄ group in a zig-zag chain, being attached to the Fe at mutually *cis*-positions. The Fe atoms were octahedrally coordinated and Mössbauer and IR spectral data indicated that the M—Fe bonds were covalent. The reaction between Zn²⁺ and [Fe(CO)₄]²⁻ was studied potentiometrically⁷³, and species such as ZnFe(CO)₄, [ZnHFe(CO)₄]⁺, [Zn₂Fe(CO)₄]²⁺ and [HOZnFe(CO)₄]²⁺ were detected. The pK_a values for Fe(CO)₄H₂ in 1M aqueous NaClO₄ was 4.00 ± 0.01, and for [HFe(CO)₄]⁻ 12.68 ± 0.04. The IR and Mössbauer spectral data obtained⁷² from Fe(CO)₄ML₂ (M = Zn or Cd, L = N-donor ligand) indicated that these species also were di- or poly-meric, and that the Fe atom was octahedrally coordinated. Insertion⁷⁴ of Hg, Zn or Cd into the Fe—Fe bond in [Fe₂(CO)₈]²⁻, giving [(CO)₄Fe—M—Fe(CO)₄]²⁻, occurred over a long time at temperatures greater than 100°. Carbonyl, phosphine and related hydride and halide complexes of Fe^{II}, Ru^{II} and Os^{II}. Displacement of N₂ by CO in Fe(PEtPh₂)₃(N₂)H₂ gave⁷⁵ Fe(CO)(PEtPh₂)₃H₂. Treatment of Ru(CO)(PPh₃)HCl with PHPh₂ afforded⁷⁶ [Ru(CO)(PHPh₂)₄H]⁺, in which the hydride ligand was *trans* to CO. It has been shown⁷⁷ that there is a relationship between the ¹H NMR chemical shift of the hydride resonance and the stereochemistry of Ru(CO)(PPh₃)₃HX. Reaction of K₂OsCl₆ with P(C₆H₁₁)₃ in alcohols afforded⁷⁸ the five-coordinate Os(CO)[P(C₆H₁₁)₃]₂HCl as a mixture of isomers.

Reaction of $M(CO)(PPh_3)_3HCl (M = Ru \text{ or } Os)$ and $Ru(CO)(PPh_3)_3H_2$ with 1,3-di-*p*-tolyltriazenide (dtt) or 1,3-diphenyltriazenide (dpt, XLIX) gave⁷⁹ $Ru(CO)(PPh_3)_2(dtt)Cl$ and $M(CO)(PPh_3)_2(dpt)H$. ¹H NMR spectra indicated that the triazenide ligand was mono- or bi-dentate, and did not bridge two metal atoms.

Reduction (NaBH₄ or LiAlH₄) of *mer*-Os(CO)(PR₃)₂X₃ (X = Cl or Br; PR₃ = PMe₂Ph or PEt₂Ph) gave⁸⁰ *mer*-Os(CO)(PR₃)₂HX, and Os(PR₃)₂H₂Cl₂ reacted with CO giving Os(CO)(PR₃)₂Cl₂.

Reductive carbonylation of RuX₃ using HCO₂H in the presence of HX (X = Cl, Br or I) afforded⁸¹, depending on the conditions, a series of carbonyl halide derivatives of Ru^{II} or Ru^{III}. These included [Ru(CO)X₅]²⁻ (X = Cl or Br), [Ru(CO)(H₂O)Cl₄]²⁻, Ru(CO)Cl₃, [Ru(CO)(H₂O)Cl₂]_n, [Ru(CO)₂X]₄]²⁻, [Ru(CO)₃X₃]⁻, [Ru(CO)₂X₂]_n (X = Br or I) and, ultimately, [Ru(CO)₃X₂]₂.

Treatment of $Fe(CO)_4I_2$ with $MeC(CH_2PPh_2)_3$ (triphos) gave⁸² $Fe(CO)_2$ (triphos)I, in which the phosphine was bidentate. Iodination of this afforded $Fe(CO)_2[(Ph_2PCH_2)_2-CMe(CH_2PI_2Ph_2)]I_2$, and similar species were obtained by halogenation of $Fe(CO)_2$ (triphos).

Reaction of $\text{RuCl}_3 \cdot n\text{H}_2\text{O}$ with CO and $\text{PH}(t-\text{Bu})_2$ in 2-methoxyethanol afforded⁸³ L, which, in boiling ethanol, was converted into LI. The ³¹P-³¹P coupling constants were measured.

Reaction of Ru(PPh₃)₃Cl₂ with CO and H₂ in dimethylacetamide afforded⁸⁴ Ru(CO)₂(PPh₃)₂HCl and Ru(CO)₂(PPh₃)₂, LII. Carbonylation in DMF gave an isomer of LII, viz. LIII, whereas in acetamide LIII and a further isomer, LIV, were obtained. Treatment of Ru(AsPh₃)₃Cl₂ with O₂ gave⁸⁵ Ru(AsPh₃)₃Cl₂(O₂) which reacted with CO giving Ru(CO)₂(AsPh₃)₂Cl₂. Solutions containing the arsine complex and maleic acid activated oxygen and catalytically reduced maleic to succinic acid in the presence of hydrogen. Ru(PhSCH₂CH₂SPh)₂X₂ (X = Cl or Br) reacted⁸⁶ with CO in refluxing 2-methoxyethanol giving *cis*-Ru(CO)₂(PhSCH₂CH₂SPh)X₂. The corresponding complex

containing $EtSCH_2CH_2SEt$ did not react with CO, and neither sulfur complexes reacted with PhC=CPh. In refluxing DMF, Ru[(EtSCH_2)_3CMe]Cl_2 gave Ru(CO)[(EtSCH_2)_3CMe]Cl_2 (the dibromide was obtained from this using LiBr), but in refluxing 2-methoxyethanol in the presence of CO the seven coordinate Ru(CO)_2[(EtSCH_2)_3CMe]Cl_2 was formed. Reduction of these compounds with LiAlH₄ did not apparently produce hydride complexes.

Zinc amalgam reduction⁸⁷ of Os(PMe₂Ph)₃Cl₃ in THF gave Os(CO)(PMe₂Ph)₃Cl₂, LV, and at its melting point it isomerised to LVI. Zinc reduction of OsL₃X₃ (X = Cl or

Br, L = tertiary phosphine or AsMe₂Ph) in the presence of Y (Y = CO, MeNC, PhNC, MeCN or PhCN) gave⁸⁸ OsL₃(Y)X₂, OsL₂(Y)₂X₂ and $[Os_2L_6X_3]^+$ (Scheme 5). Reaction with NO (L = PMe₂Ph) gave OsL₂(NO)Cl₂(NO₂) and $[OsL_3(NO)Cl(NO_2)]^+$ and oxidation of Os(CNMe)L₃Cl₂ with Cl₂ provided the paramagnetic $[Os(CNMe)L_3Cl_2]^+$. Reaction of OsL₃(N₂)Cl₂ (L = PMe₂Ph; isomer B) with CO in toluene at 70° gave Os(CO)L₃Cl₂ (75%; B) and OsL₃(N₂)Cl₂ (25%; B), but reaction of OsL₂(CO)₂Cl₂ (L = P(n-Pr)₂Ph; C) with L and CO in toluene gave Os(CO)L₃Cl₂ (B). Small amounts of Os(CNMe)L₃Cl₂ (L = PEt₃) were obtained when Os(CNMe)₂L₂Cl₂ was treated with L, but Os(CNMe)L₃Cl₂ (L = PMe₂Ph) readily afforded Os(CO)L₃Cl when treated with CO. The integrated intensities of the stretching frequency (IR) of L in OsL(PR₂Ph)₃X₂ (L = CO or N₂; R = Me, Et or OMe; X = Cl or Br) were used to show⁸⁹ that CO is a better σ -donor and π -acceptor than N₂.

Oxidative addition of o-quinones $(C_6X_4O_2; X = Cl \text{ or } Br; 1,2\text{-naphthaquinone})$ afforded⁹⁰ cis-dicarbonyl species, $Ru(CO)_2(PPh_3)_2O_2C_6X_4$, and these were also obtained from $Ru(CO)_2(PPh_3)_2Cl_2$ and $C_6X_4(OH)_2$ in the presence of base. Addition of SO₂ to $Ru(CO)_3(PPh_3)_2$ gave⁹¹ $Ru(CO)_2(PPh_3)_2(SO_2)$ which reacted with O_2 to give $Ru(CO)_2(PPh_3)_2(O_2SO_2)$, also obtained from the parent carbonyl with H_2SO_4 .

Scheme 5

Oxygenation of $Ru(CO)_3(PPh_3)_2$ afforded $Ru(CO)_2(PPh_3)_2(O_2CO)$ from which $Ru(CO)_2(PPh_3)_2Cl_2$ was obtained on treatment with HCl.

Other carbonyl species. Metathetical displacement of NaCl from CoCl₂ and Na₃[Fe(CO)(CN)₅] (ν (CO) = 2040 cm⁻¹) afforded⁹², in water, Co₃[Fe(CO)(CN)₅] · 5-7H₂O (ν (CO) = 1950 cm⁻¹); the drop in ν (CO) was interpreted in terms of a Fe-C=O→Co interaction. Manganese and nickel salts were obtained similarly.

Mesoporphyrin(IX) dimethylester and tetraphenylporphine(II) reacted^{93,94} with $Ru_3(CO)_{12}$ giving ruthenium(II) monocarbonyl porphyrin complexes. The ¹H NMR spectra of the imidazole adducts of these were initially interpreted⁹³ in terms of a "shuttling" between the two N atoms of the heterocycle, but may in fact be explained⁹⁴ by a relatively rapid exchange between free and bound imidazole.

Oxidative addition of $S_2C_2(CF_3)_2$ to $Ru(CO)(S_2CNR_2)_2$ (R = Me or Et) gave⁹⁵ the diamagnetic, stereochemically non-rigid $Ru[S_2C_2(CF_3)_2](S_2CNR_2)_2$.

Carboxylic acids reacted⁹⁶ with Ru(CO)₄(PPh₃) or Ru₃(CO)₉(PPh₃)₃ giving Ru₂(CO)₄(PPh₃)₂(O₂CR)₂ (R = H, Me or Et). Ru(CO)₃(PPh₃)₂ reacted with RCO₂H giving Ru(CO)₂(PPh₃)₂(O₂CR)₂, LVII. The structures of Ru₂(CO)₄(pyridine)₂(O₂CMe)₂ and Os₂(CO)₆(O₂CMe)₂ are similar (LVIII), the latter having⁹⁷ $C_{2\nu}$ symmetry. The

Ru–Ru distance was 2.68 Å whereas the Os–Os distance was 2.73 Å, significantly shorter than that in $Os_3(CO)_{12}$ ⁹⁸, and equivalent to a single bond. The axial CO groups were not colinear with the Os–Os bond but were tilted along a mirror plane towards the acetate groups, and were weakly bonded (M–CO(axial) 1.96 Å; M–CO(equatorial) 1.79 Å) and more easily replaced. The interactions between the CO groups of LVIII, particularly

intermolecular coupling, and coupling between CO groups bonded to different metal atoms, were described⁹⁹ as being due principally to dipole-dipole forces. This force field approach allowed a consistent interpretation of the solution and solid state spectra for LVIII and for $[(\pi - C_5H_5)M(CO)_2]_2$ (M = Fe or Ru) to be made.

Isocyanide complexes

Octahedral complexes $Fe(CNR)_4(CNBX_3)_2$ (R = H, Me or Et; X = halogen) were obtained ¹⁰⁰ in the reaction between $Fe(CNR)_4(CN)_2$ and BX_3 . The signs of the ⁵⁷Fe quadrupole splittings in the Mössbauer spectra of *trans*-Fe(*p*-MeOC₆H₄NC)₄Cl₂ (positive), its *cis*-isomer (negative) and *trans*-Fe(CNEt)₄(CN)₂ (negative) have been determined ¹⁰¹. Ethyl isocyanide reacted ¹⁰² with Ru(EPh₃)_nX₂ (E = P or Sb; X = Cl or Br; n = 3 or 4) or Ru(AsPh₃)₂(MeOH)X₃ giving *trans*-Ru(CNEt)₂(EPh₃)₂X₂, which was converted to the *cis*-isomer by heating at 240° or refluxing in 2-methoxyethanol. These complexes reacted ¹⁰³ with SnCl₂ giving *cis*-Ru(CNEt)₂(EPh₃)₂(SnCl₃)Cl. *trans*-Ru(CNEt)₄Cl₂ formed *trans*-Ru(CNEt)₄(SnCl₃)₂ and Ru(CNEt)₄Cl₂ · HgCl₂ when

treated ¹⁰⁴ with SnCl₂ or HgCl₂; the latter formed $[Ru(CNEt)_4(MeNO_2)Cl]^+[HgCl_3]^$ when dissolved in nitromethane.

Isocyanides reacted¹⁰⁵ with Ru(CO)L₃HCl (L = PPh₃) giving Ru(CO)(CNR)L₂HCl, whose reactions are summarised in Scheme 6. Protonation of Ru(CO)₂(CNR)(PPh₃)₂ occurred specifically *trans* to CNR and not to CO, and Ru(CO)(CNR)(PPh₃)₃ was a catalyst for the oxidation of PPh₃.

Scheme 6

Addition of methylamine to $[Fe(CNMe)_6]$ [HSO₄]₂ afforded ¹⁰⁶ LIX, and it was suggested that MeNH₂ addition occurred in a stepwise fashion via LX.

Nitrosyl complexes

A series of potentially bidentate ligands $(L-L = Me_2AsC(CF_3)=C(CF_3)AsMe_2, f_4 \text{ fos, } f_6 \text{ fos or } f_8 \text{ fos}^{107}, o - C_6H_4(AsMe_2)_2^{108})$ reacted with $Fe(NO)_2(CO)_2$ to give $Fe(NO)_2(L-L)$. With $Ph_2PCH_2CH_2AsPh_2$, both $Fe(NO)_2(CO)(L-L)$ (monodentate L-L) and $Fe(NO)_2(L-L)$ were obtained¹⁰⁷, but complexes with $Me_2AsCH=CHAsMe_2$ were too unstable to isolate ¹⁰⁸. $Fe(NO)_2(f_6 \text{ fos})$ had a distorted tetrahedral structure¹⁰⁹ and there was evidence for considerable $Fe \rightarrow NO$ donation. The Mössbauer spectra of $Fe(NO)_2(CO)L$ ($L = PPh_3$, PMePh₂, AsPh₃, P(OPh)_3, CO) and of $Fe(NO)_2L_2$, were

measured ¹⁰⁷ and an order of π -acceptor strengths of L and L-L constructed. The weak ESR spectra of [Fe(NO)₂X]₂ (X = Br or I) in CCl₄ were consistent with the formation of Fe(NO)₂X(CCl₄). Reaction of [Fe(NO)₂Br]₂ with NaO₂CCH₂NHR (R = H or Me) afforded ¹¹⁰ Fe(NO)₂(O₂CCH₂NHR) which could be reduced by sodium amalgam to Na⁺[Fe(NO)₂(O₂CCH₂NHR)]⁻; Fe(NO)₂(O₂CCHRNH₂) (R = Me, i-Pr or Ph) and Fe(NO)₂ [OC₆H₄C(R)=NOH] (R = H or Me) were also prepared.

The crystal structure determinations of Ru(NO)(PPh₃)₃H and [Ru(NO)(Ph₂PCH₂CH₂-PPh₂)₂]⁺ have established¹¹¹ the linearity of the Ru–N–O bond systems. Reaction of Ru(NO)Cl₃ with L (L = P(n-Bu)₃, PPh₃, PMe₂Ph or AsMe₂Ph) in ethanol or 2-methoxyethanol afforded¹¹² two isomers of Ru(NO)L₂Cl₃ (LXI and LXII), and there was evidence for [Ru(NO)L₃Cl₂]⁺. Treatment of Ru(NO)Cl₃ with o-C₆H₄(AsMe₂)₂ (diars) in ethanol gave¹¹³ Ru(NO)(diars)Cl₃, but on refluxing, *trans*-[Ru(NO)(diars₂Cl]Cl₂ was formed. Similar products were obtained with *cis*-Me₂AsCH=CHAsMe₂. Hydrazine reduction of [Ru(NO)(diars)₂Cl]⁺ afforded Ru(diars)₂(N₃)Cl, and reaction with PhNHNH₂ gave Ru(diars)₂ [N(O)=NNHPh] Cl. Reaction of Ru(diars)₂(N₃)Cl with NO⁺ gave the starting material together with Ru(diars)₂(N₃)Cl and [Ru(NO)(diars)₂Cl]²⁺.

trans-Fe(CO)₃(PPh₃)₂ reacted ¹¹⁴ with NOX (X = BF₄ or PF₆) in methanol giving [Fe(CO)₂(NO)(PPh₃)₂]X. The corresponding Ru and Os complexes did not behave similarly, affording instead [M(CO)₃(PPh₃)₂H]⁺. However, [M(CO)₂(NO)(PPh₃)₂]⁺ (M = Ru or Os) were obtained by reacting Ru₃(CO)₉(PPh₃)₃ with NO⁺ in methanol, or Os(CO)(NO)(PPh₃)₂Cl with CO and NaBPh₄. Methoxide ion attack on [M(CO)₂(NO)-(PPh₃)₂]⁺ (M = Fe or Os) afforded M(CO)(NO)(PPh₃)₂(CO₂Me), and the starting material was regenerated when this was treated with HPF₆; the reaction when M = Ru was complex

$$[M(CO)_2(NO)L_2]^+ \xrightarrow{CHCl_3, N_2} M(NO)L_2Cl_3 + cis-M(CO)_2L_2Cl_2$$

(M = Ru or Os)

$$[Os(CO)_{2}(NO)L_{2}]^{+} \xrightarrow{CHCl_{3} \text{ air}} Os(NO)L_{2}(O_{2}CO)Cl + cis-Os(CO)_{2}L_{2}Cl_{2}$$
$$[M(CO)_{2}(NO)L_{2}]^{+} \xrightarrow{Cl_{2}} \xrightarrow{Ru(NO)L_{2}Cl_{3}} cis-Os(CO)_{2}L_{2}Cl_{2}$$

Scheme 7 $(L = PPh_3)$

and did not give stable products. Other reactions of these complexes are summarised in Scheme 7. IR spectral data suggested that the M—CO bond in the Ru cations is weaker than those in the corresponding Fe and Os species.

Ru(PPh₃)₃HCl reacted with [ArN₂] [BF₄] (Ar = p-MeC₆H₄ and p-MeOC₆H₄) giving¹¹⁵ [Ru(N₂Ar)₂(PPh₃)₂Cl] [BF₄]. Chlorination of these afforded Ru(N₂Ar)(PPh₃)₂Cl₃ and sodium amalgam reduction in ethanol afforded some ArNH₂. Reaction of Ru(PPh₃)₃Cl₂ with [ArN₂] [BF₄] gave {[Ru(N₂Ar)(PPh₃)₂Cl₂] [BF₄]}_n, which may be dimeric with Cl bridges. The crystal structure determination of $[Os(NO)_2(PPh_3)_2(OH)]^+$ has shown¹¹⁶ that the molecule was square pyramidal, LXIII, and that while the equatorial Os-N-O bond angle was essentially 180°, the axial bond angle was 127.5°. This may be compared with the similar [Ru(NO)₂(PPh₃)₂Cl]⁺, where the axial bond angle was 136°¹¹⁷.

Reaction of $[Fe(CO)_3(NO)]^-$ with $GeX_2(Ph_2)(X = Cl \text{ or } Br) gave^{118} [Fe(CO)_3(NO)]_2$ -GePh₂, and $[(\pi - C_5H_5)Fe(CO)_2]_2$ afforded $(\pi - C_5H_5)Fe(CO)_2X$ and $[(\pi - C_5H_5)Fe(CO)_2]_2$. GePh₂. Sodium amalgam reduction of Hg[Fe(CO)₂L(NO)]₂ (L = CO, PPh₃, P(OPh)₃ or AsEt₂Ph) afforded^{119,120} [Fe(CO)₂L(NO)]⁻ which reacted with a variety of alkyl and phenyl Group IVA halides giving $Fe(CO)_2 L(NO)(MR_3)$ (M = Ge, Sn, or Pb; R = Me, Et, n-Bu, Ph, Cl or Br), and $[Fe(CO)_2L(NO)]_2MPh_2$ (M = Sn or Pb). Reaction of Na[Fe(CO)₃(NO)] with SnPhCl₃ or SnCl₄ afforded¹²⁰ [Fe(CO)₃(NO)]₂SnPh or [Fe(CO)₃(NO)]₄Sn, respectively. From IR spectral data it was suggested that these compounds have trigonal bipyramidal structures with a linear L-Fe-M arrangement. When the Group IVA fragment was $SnPh_3Cl$ or $SnPhCl_3$, or $L = AsEt_2Ph$, isomerism owing to restricted rotation about the Fe-Sn or Fe-As bond, was observed. In acetonitrile, $Fe(CO)_2L(NO)(MPh_3)$ and $[Fe(CO)_2L(NO)]_2MPh_2$ dissociated reversibly giving $[Fe(CO)_2L(NO)]^-$. Displacement of CO by L' (PPh₃, P(OPh)₃, or AsEt₂Ph) from $Fe(CO)_3(NO)AuL$ (L = alkyl, aryl phosphine or phosphite) afforded ¹²¹ Fe(CO)₂L'(NO)AuL. The compounds were isostructural with Co(CO)₄AuPPh₃ and had an approximately linear L'-Fe-Au-L system with trigonal bipyramidal coordination about the Fe. The complexes dissociated in donor solvents giving $[Fe(CO)_2L'(NO)]^-$.

π -Cyclopentadienyl and related carborane complexes

Simple binuclear species. Szilard-Chalmers reactions in $[(\pi-C_5H_5)Fe(CO)_2]_2$ gave¹²² the radioactive dimer, as well as radioactive $(\pi-C_5H_5)_2Fe$ and $Fe(CO)_5$. No proton resonance shifts were detected¹²³ in the ¹H NMR spectra of $(\pi-C_5H_5)Fe(CO)_2X$ (X = Br, I, NCS or Me) when treated with Eu(fod)₃*, but they were observed when X = Cl, N₃ or

* fod = 1,1,1,2,2,3,3,-heptafluoro-7,7-dimethyl-4,6-octanedionate.

CN, and in the spectra of $[(\pi - C_5H_5)Fe(CO)_2]_2$. Considerable spectral simplification of $(\pi - C_5H_5)Fe(CO)[P(n-Bu)_3]$ (COMe) was achieved with Eu(fod)₃ enabling identification of the ³¹P-¹H coupling in the $\pi - C_5H_5$ protons. It would appear that suitable bridging groups (e.g. CO, CN) are necessary before interaction with the Eu atom is possible.

Protonation of $[(\pi-C_5H_5)Fe(CO)_2]_2$ in liquid HCl afforded¹²⁴ the known¹²⁵ [$\{(\pi-C_5H_5)Fe(CO)_2\}_2H$]⁺, but in the presence of NOCl or Cl₂, $(\pi-C_5H_5)Fe(CO)_2Cl$ was formed. Reaction of $(\pi-C_5H_5)Fe(CO)_2X$ (X = Cl, Br or I) with BCl₃ in liquid HCl gave the known¹²⁶ [$\{(\pi-C_5H_5)Fe(CO)_2\}_2Cl$]⁺, and chlorination of $(\pi-C_5H_5)Fe(CO)_2Cl$ in HCl produced low yields of $[(\pi-C_5H_5)Fe(CO)_3]^+Cl^-$, which was converted to the BCl₄⁻ salt by addition, in HCl, of BCl₃.

Hexamethyl-Dewar-benzene reacted¹²⁷ with K₂PtCl₄ in acid conditions to give Pt(C₅HMe₅)Cl₂ which, on treatment with Fe₃(CO)₁₂, afforded the diene Fe(C₅HMe₅)(CO)₃ and [(π -C₅Me₅)Fe(CO)₂]₂. The latter could also be prepared¹²⁸ from LXIV and Fe(CO)₅ or Fe₂(CO)₉, but LXV and (π -C₅Me₅)Fe(CO)₂COMe were also formed; the reaction is summarised in Scheme 8. Also prepared were (π -C₅Me₅)Fe(CO)₂Br and (π -C₅H₅)Fe(CO)₂C₆F₅.

LXIV
$$\xrightarrow{\operatorname{Fe}_{\mathbf{x}}(\operatorname{CO})_{\mathbf{y}}}$$
 LXV $\xrightarrow{-\operatorname{CO}}$ $(\pi - \operatorname{C}_{5}\operatorname{Me}_{5})\operatorname{Fe}(\operatorname{CO})_{2}\operatorname{COMe}$
 $\downarrow -\operatorname{CO}$
 $(\pi - \operatorname{C}_{5}\operatorname{Me}_{5})\operatorname{Fe}(\operatorname{CO})_{2}^{*} \xleftarrow{-\operatorname{Me}} (\pi - \operatorname{C}_{5}\operatorname{Me}_{5})\operatorname{Fe}(\operatorname{CO})_{2}\operatorname{Me}$
 \downarrow
 $[(\pi - \operatorname{C}_{5}\operatorname{Me}_{5})\operatorname{Fe}(\operatorname{CO})_{2}]_{2}$

Scheme 8

Reaction of SiMe₃(C₅H₅) with Fe(CO)₅ gave¹²⁹ [(π -Me₃SiC₅H₅)Fe(CO)₂]₂, but treatment of [(π -C₅H₅)Fe(CO)₂]₂ with the silane produced ferrocene-type derivatives, CO and possibly H₂. Tetraphenyldiazocyclopentadiene reacted¹³⁰ with Fe₂(CO)₉ giving [(π -C₅HPh₄)Fe(CO)₂]₂.

IR spectral studies of $(\pi$ -dienyl)FeCo(CO)₆ (dienyl = C₅H₅, C₅H₄Me or indenyl) revealed¹³¹ the existence of two bridged (LXVI, LXVII), and one non-bridged (LXVIII),

isomers. The proportion of non-bridged isomer present in polar solvents depended on temperature and the nature of the dienyl ring. Only the non-bridged isomer of $(\pi - C_5 H_5) RuCo(CO)_6$ was observed. The IR spectrum of $(\pi - C_5 H_5) Fe(CO)(\mu - CO)_2 Ni(\pi - C_5 H_5)$ was independent¹³² of solvent, and consistent with an almost planar $Fe(\mu - CO)_2 Ni$ bridging system.

Reaction of $[(\pi-C_5H_5)Fe(CO)_2]_2$ with PhP(CH₂CH₂PPh₂)₂ (Pf-Pf-Pf) gave¹³³ $[(\pi-C_5H_5)Fe(CO)]_2$ Pf-Pf (LXIX) and Fe₂(CO)₉ afforded Fe(CO)₄(Pf-Pf) in which the triphosphine was monodentate. In boiling acetonitrile, $(\pi-C_5H_5)Fe(CO)_2$ Me reacted with Pf-Pf giving $(\pi-C_5H_5)Fe(CO)(Pf-Pf-Pf)(COMe)$ in which the phosphine was again monodentate, but UV irradiation of $(\pi-C_5H_5)Fe(CO)_2$ Br with the phosphine in benzene afforded $[(\pi-C_5H_5)Fe(Pf-Pf-Pf)]^+$ where the ligand was tridentate. Reaction of (Ph₂PCH₂CH₂PPhCH₂)₂ (Pf-Pf-Pf) with $[(\pi-C_5H_5)Fe(CO)_2]_2$, $(\pi-C_5H_5)Fe(CO)_2$ Me and $(\pi-C_5H_5)Fe(CO)_2I$ gave¹³⁴ $[(\pi-C_5H_5)_2Fe_2(CO)_2]_2$ (Pf-Pf-Pf), $(\pi-C_5H_5)Fe(CO)_2$ (Pf-Pf-Pf-Pf)(COMe) (phosphine monodentate) and $[(\pi-C_5H_5)Fe(Pf-Pf-Pf)]^+$ (phosphine tridentate). Treatment of $(\pi-C_5H_5)Fe(CO)_2I$ with P(CH₂CH₂PPh₂)₃ (P-Pf₃) afforded $[(\pi-C_5H_5)Fe{P(Pf_3)}]^+$.

Cationic species. Oxidation of $[(\pi-C_5H_5)Fe(CO)_2]_2$ with $Fe(ClO_4)_3$ in acetonitrile or acetone gave¹³⁵ $[(\pi-C_5H_5)Fe(CO)_2L]^+(L = MeCN \text{ or } Me_2CO)$. Replacement of L by X (Cl, Br, I, NCS, SCN or ONO₂) led to $(\pi-C_5H_5)Fe(CO)_2X$, and L' (pyridine, CO, SEt₂ or PPh₃) gave $[(\pi-C_5H_5)Fe(CO)_2L']^+$. Slow addition of Ph₂PCH₂CH₂PPh₂(diphos to the species with L = acetone gave¹³⁶ $[(\pi-C_5H_5)Fe(CO)_2(diphos)]^+$, which, on UV irradiation, afforded $[(\pi-C_5H_5)Fe(CO)(diphos)]^+$ (phosphine bidentate) and which, on treatment with further acetone adduct, gave $[\{(\pi-C_5H_5)Fe(CO)_2\}_2(diphos)]^{2+}$. Similar complexes could be obtained with pyrazine and MeSCH₂CH₂SMe.

Mössbauer spectral data obtained from $[(\pi - C_5 H_5)Fe(CO)_2 L]^+ (L = CS, CO \text{ or PPh}_3)$ and $(\pi - C_5 H_5)Fe(CO)_2 X (X = CN, NCO, NCS \text{ or Br})$ indicated¹³⁷ that the electron density on the Fe atom decreased in the order $CS > CO > CN > PPh_3 > NCO > NCS > Br$.

Nucleophilic attack by N_2H_4 or N_3 on $[(\pi - C_5H_5)Fe(CO)_2(PPh_3)]^+$ gave¹³⁸ $(\pi - C_5H_5)Fe(CO)(PPh_3)NCO$. The kinetics of this reaction, and those involving the related $[(\pi - C_5H_5)Fe(CO)_2L]^+$, L = CO or C_2H_4 , indicated that an acyl azide was formed as an intermediate by attack of N_3 on CO (Scheme 9). The reaction between

Scheme 9

 $[(\pi-C_5H_5)Fe(CO)_3]^+$ and N ¹⁴CO gave¹³⁹ $(\pi-C_5H_5)Fe(CO)_2NCO$ and ¹⁴CO, $(\pi-C_5H_5)Fe(CO)_2N^{14}CO$ and CO, and small amounts of $[(\pi-C_5H_5)Fe(CO)_2]_2$. The results showed clearly that the greatest percentage of ¹⁴C was in $(\pi-C_5H_5)Fe(CO)_2NCO$, so that the reaction was thought to proceed via displacement of a CO group from the metal.

Reaction of $[(\pi-C_5H_5)Fe(CO)_2(CS)]^+$ with N_3^- or N_2H_4 gave¹⁴⁰ $(\pi-C_5H_5)Fe(CO)_2NCS$ where as NCO⁻ or NCS⁻ afforded $(\pi-C_5H_5)Fe(CO)_2CN$. However, with OR⁻ or NH₂R (R = Me or Et), the thiocarbonyl cation formed $(\pi-C_5H_5)Fe(CO)_2C(=S)OR$ or $(\pi-C_5H_5)Fe(CO)_2C(=S)NHR$; both of these compounds reformed the precursor on treatment with acid (HCl).

Treatment of $[(\pi-C_5H_5)Fe(CO)(CNMe)_2]^+$ with BH_4^- gave¹⁴¹ LXX and small amounts of $(\pi-C_5H_5)_2Fe_2(CO)_3(CNMe)$, $(\pi-C_5H_5)_2Fe_2(CO)_2(CNMe)_2$ and $[(\pi-C_5H_5)Fe(CO)_2]_2$. Similar reactions with $[(\pi-C_5H_5)Fe(CO)_2(CNMe)]^+$ gave $[(\pi-C_5H_5)Fe(CO)_2]_2$, $(\pi-C_5H_5)_2Fe_2(CO)_3(CNMe)$ and only very small amounts of LXX (L = CO). The bonding within the unusual amino-borane ring system could be represented by two canonical forms, LXXIa and LXXIb, although two other structures, LXXIc and LXXId, are possible. Reaction of $[(\pi-C_5H_5)Fe(CNMe)_3]^+$ with BH_4^- gave LXXII, and interaction of LXXI with $Ph_3C^+BF_4^-$ afforded $(\pi-C_5H_5)Fe(CO)[(CHNMe)_2BF_2]$.

Halide and related complexes. The metal-carbonyl bending vibrations in $(\pi - C_5 H_4 R)Fe(CO)_2 X$ (R = H or Me; X = Cl, Br, I, SnCl₃, SnBr₃, HgCl, HgBr or Hgl) were assigned ¹⁴² in CS₂ solution.

Halogenation of $[(\pi - C_5H_5)Ru(CO)_2]_2$ in toluene, in the presence of BPh₄⁻ or PF₆⁻, gave¹⁴³ the appropriate salts of $[\{(\pi - C_5H_5)Ru(CO)_2\}_2X]^+(X = Cl, Br \text{ or } I);$ at low temperatures (-80°) the species isolated were green, but these were yellow at room temperature. The compounds where X = Cl or Br were particularly susceptible to nucleophilic attack, *viz*. $\{[(\pi - C_5H_5)Ru(CO)_2]_2\}X^+ + Y^- \rightarrow (\pi - C_5H_5)Ru(CO)_2X$ + $(\pi - C_5H_5)Ru(CO)_2Y(Y = Cl, Br, I, CN, SCN \text{ or } N_3)$, and with BPh₄⁻, $(\pi - C_5H_5)$ -Ru(CO)₂X and $(\pi - C_5H_5)Ru(CO)_2Ph$ were formed. The reaction with $[BBu_4]^-$ was similar, but with $[BPh_3(CN)]^-$, $(\pi - C_5H_5)Ru(CO)_2X$ and $(\pi - C_5H_5)Ru(CO)_2CN$ were the products. However, treatment of $(\pi - C_5H_5)Ru(CO)_2Cl$ with NaBPh₄ in refluxing

methanol gave $(\pi - C_5 H_5)Ru(CO)_2Ph$, in contrast to the reaction with $(\pi - C_5 H_5)Ru(PPh_3)_2Cl$, where $(\pi - C_5 H_5)Ru(\pi - C_6 H_5 BPh_3)$, LXXIII, was formed.

Complexes containing P, As or Sb donor ligands. Treatment of $(\pi-C_5H_5)Fe(CO)_2Cl$ with P(OR)₃ (R = Me, Et, n-Bu or C₃H₅) gave¹⁴⁴ $(\pi-C_5H_5)Fe(CO)[P(OR)_3]Cl$, $[(\pi-C_5H_5)Fe(CO)_2{P(OR)_3}]^*Cl^-$, $(\pi-C_5H_5)Fe(CO)_2[P(=O)(OR)_2]$ and $(\pi-C_5H_5)Fe(CO)-[P(OR)_3][P(=O)(OR)_2]$; reaction with P(OC₃H₅)₂Ph or P(OC₃H₅)Ph₂ afforded similar compounds in which the P–C bond remained intact. The phosphonite complexes were formed via the phosphite adduct in a form of the Michaelis-Arbuzov rearrangement. Reaction of $(\pi-C_5H_5)Fe(CO)_2I$ with P(OR)₃, however, gave only $(\pi-C_5H_5)Fe(CO)-[P(OR)_3]I$. With PR₃ (R = Et or n-Bu), $(\pi-C_5H_5)Fe(CO)_2X$ (X = Cl or I) formed $(\pi-C_5H_5)Fe(CO)(PR_3)X$ and $[(\pi-C_5H_5)Fe(CO)_2(PR_3)]^+Cl^-$.

With an excess of P(OPh)₃, $(\pi$ -C₅H₅)Fe[P(OPh)₃]₂I formed¹⁴⁵ [$(\pi$ -C₅H₅)-Fe{P(OPh)₃}₃]⁺ whereas the iodide, in the presence of a slight excess of AgPF₆ and L, gave [$(\pi$ -C₅H₅)Fe{P(OPh)₃}₂L]⁺ where L = RCN (R = Me, CH₂Cl, NMe₂, CH₂CONH₂, CH₂CO₂H or Et), C₂H₄, SO₂, P(OPh)₃, PEt₃ or CO. Borohydride or LiPh reduction of the triphosphite cation afforded (C₅H₅R)Fe[P(OPh)₃]₃ (R = H or Ph, respectively), but borohydride reduction of the ethylene complex (L = C₂H₄) gave the corresponding ethyl, (π -C₅H₅)Fe[P(OPh)₃]₂Et. UV irradiation of (π -C₅H₅)Fe[P(OPh)₃]₂I in the presence of diphos afforded (π -C₅H₅)Fe(diphos)I which, when treated with Ag⁺ and CO, gave [(π -C₅H₅)Fe(diphos)(CO)]⁺. Treatment of (π -C₅H₅)Fe(dmpe)I (dmpe = Me₂PCH₂-CH₂PMe₂) in acetone under N₂ at 0° with TIBF₄ gave¹⁴⁶ [{(π -C₅H₅)Fe(dmpe)}₂N₂]-(BF₄)₂· 2H₂O, but if the reaction was carried out under argon, the product was [(π -C₅H₅)Fe(dmpe)(acetone)]⁺; reaction of this acetone adduct with N₂ gave the binuclear nitrogen complex, but reaction of either of these with CO afforded $[(\pi-C_5H_5)Fe(dmpe)(CO)]^+$. Reduction of $(\pi-C_5H_5)Fe(dmpe)I$ or $[{(\pi-C_5H_5)Fe(dmpe)}_2N_2]^{2+}$ with LiAlH₄ afforded only $(\pi-C_5H_5)Fe(dmpe)H$, and no NH₃.

A series of π -cyclopentadienylruthenium-phosphine, -arsine and -phosphite complexes have been prepared¹⁴⁷ (Scheme 10). Reaction of $(\pi$ -C₅H₅)Ru(PPh₃)₂Cl with LiMe,

 $\mathbf{D}_{\mathbf{u}}(\mathbf{D}\mathbf{D}\mathbf{b}_{\mathbf{u}})$

Scheme 10

MeMgI, LiC₆F₅ and SnCl₂ gave $(\pi$ -C₅H₅)Ru(PPh₃)₂X (X = Me, I, C₆F₅ or SnCl₃ respectively). With NaBH₄, the phosphine chloride afforded $(\pi$ -C₅H₅)Ru(PPh₃)₂(H₂BH₂), in contrast to $(\pi$ -C₅H₅)Ru(CO)₂Cl which gave the corresponding hydride¹⁴⁸. However, the phosphine hydride (X = H) was obtained from the chloride using LiAlH₄. Further reactions of $(\pi$ -C₅H₅)Ru(PPh₃)₂Cl are summarised in Scheme 11. In acetonitrile, the

$$Fe(CO)_4(PPh_3) + (\pi - C_5H_5)Ru(CO)(PPh_3)Cl$$

Scheme 11

phosphine chloride gave $[(\pi-C_5H_5)Ru(PPh_3)_2(NCMe)]^+$, and if this was carried out in the presence of ZnCl₂ or HgCl₂, the cation so formed was stabilised by the anions $[Zn_2Cl_6]^{2-}$ or $[HgCl_3]^-$.

When PPh₂Cl was treated with NaFe(CO)₂(π -C₅H₅), (π -C₅H₅)Fe(CO)₂PPh₂ was formed¹⁴⁹. This reacted with Fe₂(CO)₉ giving (π -C₅H₅)Fe(CO)₂(μ -PPh₂)Fe(CO)₄ which has been described elsewhere⁴⁸, and can also be obtained from the reaction between NaFe(CO)₂(π -C₅H₅) and Fe(CO)₄(PPh₂Cl). As mentioned previously, UV irradiation of the μ -phosphide afforded (π -C₅H₅)Fe(CO)(μ -PPh₂)(μ -CO)Fe(CO)₃. Reaction of (π -C₅H₅)Fe(CO)₂(PPh₂) with (π -C₅H₅)Fe(CO)₂Cl gave [{(π -C₅H₅)Fe(CO)₂}₂(PPh₂)]⁺Cl⁻.

Treatment of the μ -phosphido- μ -carbonyl species with PR₃ or P(OR)₃ (L) gave three types of products: (i) (π -C₅H₅)Fe₂(CO)₄L(PPh₂) (L = PR₃, R = Et or Ph; L = P(OR)₃, R = Me, Et, s-Bu, Ph) which had bridging and terminal CO groups; (ii) (π -C₅H₅)-Fe₂(CO)₅L(PPh₂) (L = PEt₃; L = P(OR)₃, R as before), and (iii) (π -C₅H₅)Fe₂(CO)₄L₂-(PPh₂) (L as for (ii)). Groups (ii) and (iii) had only terminal CO groups and were derivatives of (π -C₅H₅)Fe(CO)₂(μ -PPh₂)Fe(CO)₄. There was some evidence for the existence of (π -C₅H₅)Fe(CO)₂(μ -SR)Fe(CO)₄, obtained¹⁴⁹ by treating (π -C₅H₅)Fe(CO)₂SR (R = Me, t-Bu or Ph) with Fe₂(CO)₉, but the μ -mercaptides could not be isolated. However, UV irradiation of the reaction mixture when R = t-Bu afforded (π -C₅H₅)Fe(CO)-(μ -SR)(μ -CO)Fe(CO)₃; when R = Me or Ph, only [(π -C₅H₅)Fe(CO)₂]₂ and Fe₂(CO)₆(SR)₂ were produced.

Reaction of $[(\pi-C_5H_5)Fe(CO)_2]_2$ with AsX₃ (X = Cl or Br) in dichloromethane afforded ¹⁵⁰ salts of $[\{(\pi-C_5H_5)Fe(CO)_2\}_2AsCl_2]^-$, and also $(\pi-C_5H_5)Fe(CO)_2AsX_2$. Similar derivatives could be obtained using SbX₃, but by changing solvents, neutral species only, *e.g.* $(\pi-C_5H_5)Fe(CO)_2SbX_2$ or $[(\pi-C_5H_5)Fe(CO)_2]_2SbX$ (X = Cl, Br or I), could be prepared; SbBr₃, under forcing conditions in acetone, afforded $[\{(\pi-C_5H_5)Fe(CO)_2\}_3$ -SbBr] $[(SbBr_6)(Me)_2CO]$. With BiX₃ (X = Cl or Br), only $(\pi-C_5H_5)Fe(CO)_2BiX_2$ could be isolated, and with Sb(CF₃)₂I, $[\{(\pi-C_5H_5)Fe(CO)_2\}_2Sb(CF_3)_2]$ [Sb(CF₃)₂I₂] was formed.

Complexes containing S, Se or Te donor ligands. Silver ion or iodine oxidation of $[(\pi-C_5H_5)Fe(CO)SPh]_2$ afforded¹⁵¹ the corresponding cation (cyclopentadienyl, CO and Ph groups mutually *cis*) whose Fe–Fe distance (2.93 Å) was shorter than in the neutral precursor (3.39 Å¹⁵²). In the neutral species the Fe–Fe distance was regarded as essentially non-bonding, whereas, in the cation, it corresponded to a one-electron metalmetal bond. The bridging Fe–S–Fe angle was distorted from 98° in the neutral species to 82° in the cation. Reaction of $[(\pi-C_5H_5)Fe(CO)_2]_2$ with E₂Ph₂ (E = Se or Te)

afforded ¹⁵³ $(\pi - C_5H_5)Fe(CO)_2EPh$ and $[(\pi - C_5H_5)Fe(CO)EPh]_2$; two isomers of the latter, LXXIVa and LXXIVb, were obtained and isolated with E = Se.

Electrochemical studies. Electrochemical oxidation of $[(\pi - C_5 H_5)Fe(CO)_2]_2$ occurred¹⁵⁴ in a two-electron process and could be achieved in acetonitrile, acetone or dichloromethane, using a C or Pt electrode, and a variety of base electrolytes. The products were

 $[(\pi-C_5H_5)Fe(CO)_2(NCMe)]^+$ (using MeCN and NH₄PF₆), $(\pi-C_5H_5)Fe(CO)_2Cl$ (using Et₄NCl instead of NH₄PF₆) and $[(\pi-C_5H_5)Fe(CO)_2(acetone)]^+$ (using acetone instead of MeCN). If, after electrolysis in acetone, and using PF₆⁻ as base electrolyte, SEt₂ was added to the solution, $[(\pi-C_5H_5)Fe(CO)_2(SEt_2)]$ [PF₆] was isolated.

Cyclic voltammograms of LXXV revealed¹⁵⁵ that the one-electron oxidation of these complexes was reversible; the cation, $[LXXV]^+$, was stable in dichloromethane, but disproportionated in MeCN giving $[LXXV]^0$ and $[{(\pi-C_5H_5)Fe(CO)(CNMe)}_2(Ph_2P-(CH_2)_nPPh_2]^{2+}(LXXVI)$. $[LXXV]^0$ could be oxidised further giving $[LXXV]^{2+}$ but this decomposed giving $[LXXV]^+$ and $[LXXVI]^{2+}$. The appearance of multiple oxidation processes in these dimeric phosphine complexes, but not in $[(\pi-C_5H_5)Fe(CO)_2]_2$, is apparently a consequence of the phosphine bridges.

Anodic oxidation of $[(\pi-C_5H_5)FeS]_4$ afforded ¹⁵⁶ solutions of $[(\pi-C_5H_5)FeS]_4^+$, ²⁺; the monocation was paramagnetic ($S = \frac{1}{2}$; g = 1.980) and the dication was diamagnetic. Cyclic voltammograms of $[(\pi-C_5H_5)FeS]_4^{2+}$ revealed four waves corresponding to the generation of an electrochemical series:

$$[(\pi - C_5 H_5) \text{FeS}]_4^{3+} \rightleftharpoons [(\pi - C_5 H_5) \text{FeS}]_4^{2+} \rightleftharpoons [(\pi - C_5 H_5) \text{FeS}]_4^+ \rightleftharpoons [(\pi - C_5 H_5) \text{FeS}]_4^-$$

$$\rightleftharpoons [(\pi - C_5 H_5) \text{FeS}]_4^-$$

Attempts to prepare $[(\pi-C_5H_5)FeS]_4^{3+,-}$ were unsuccessful. The related carbonyl cluster, $[(\pi-C_5H_5)Fe(CO)]_4$ also existed in an electrochemical series:

$$[(\pi - C_5 H_5)Fe(CO)]_4^{2+} \rightleftharpoons [(\pi - C_5 H_5)Fe(CO)]_4^+ \rightleftharpoons [(\pi - C_5 H_5)Fe(CO)]_4^0$$
$$\rightleftharpoons [(\pi - C_5 H_5)Fe(CO)]_4^-$$

Controlled potential electrolyses of $[(\pi - C_5H_5)Fe(CO)]_4$ afforded the paramagnetic $(S = \frac{1}{2}) [(\pi - C_5H_5)Fe(CO)]_4^+$ and $[(\pi - C_5H_5)Fe(CO)]_4^- (g = 2.013)$. Attempts to prepare the dication by electrolysis in MeCN afforded only small amounts of $[(\pi - C_5H_5)Fe(CO)]_2^-$ (CNMe)]⁺.

Alkyl, olefin and related species. Reaction of $[(\pi-C_5H_5)Fe(CO)_2]^-$ with H₂C=C(Me)CH₂Cl gave¹⁵⁷ (π -C₅H₅)Fe(CO)₂CH₂C(Me)=CH₂, which, on protonation with HBF₄ in acetic anhydride, afforded the olefin complex $[(\pi-C_5H_5)Fe(CO)_2-$ {H₂C=CMe₂}]⁺. Borohydride reduction of this gave (π -C₅H₅)Fe(CO)₂CMe₃ and (π -C₅H₅)Fe(CO)₂CH₂CHMe₂. A general route to olefin complexes has been developed¹⁵⁸

Scheme 12

(Scheme 12); the exchange reaction has been best effected via the isobutene complex cation ($\mathbb{R}^1 = \mathbb{R}^2 = Me$) using ethylene, cyclohexene, heptene or octene, cyclohexadienes or norbornadiene). With cycloocta-1,5-diene (COD), both $[(\pi-C_5H_5)Fe(CO)_2(COD)]^+$ and $[\{(\pi-C_5H_5)Fe(CO)_2\}_2(COD)]^{2+}$ were obtained. Reaction of the isobutene complex cation with PPh₃ afforded $[(\pi-C_5H_5)Fe(CO)_2PPh_3]^+$. These olefin complexes could be obtained in lower yields by oxidation of $[(\pi-C_5H_5)Fe(CO)_2]_2$ with AgPF₆ in dichloromethane in the presence of the olefin. It was possible that $[(\pi-C_5H_5)Fe(CO)_2]^+$ was an intermediate in these reactions, but oxidation of $[(\pi-C_5H_5)Fe(CO)_2]_2$ in the absence of olefin gave $[(\pi-C_5H_5)Fe(CO)_3]^+$, and in THF, $[(\pi-C_5H_5)Fe(CO)_2(THF)]^+$ could be isolated from the reaction of $(\pi-C_5H_5)Fe(CO)_2CI$ with AgBF₄.

Treatment of $[(\pi-C_5H_5)Fe(CO)_2]^-$ with $H_2C=CHCR_2CH_2X$ (R = H or Me: X = Cl or p-MeC₆H₄) or with p-MeC₆H₄OSO₂CH₂CHMe₂ gave¹⁵⁹ (π -C₅H₅)Fe(CO)₂CH₂CR₂CH=CH₂ (LXXVII) or (π -C₅H₅)Fe(CO)₂CH₂CHMe₂; reactions of LXXVII are summarised in Scheme 13. Reaction of $[(\pi-C_5H_5)Fe(CO)_2]^-$ with RCOCH=CHCl (R = Me or Ph) or RCH=CHCOCl (R = H or Ph) gave¹⁶⁰ trans-(π -C₅H₅)Fe(CO)₂CH=CHCOR and (π -C₅H₅)Fe(CO)₂COCH=CHR. UV irradiation of the latter gave (π -C₅H₅)Fe(CO)₂CH=CHR which reacted with Fe₂(CO)₉ giving LXXVIII (where R = trans-MeCO, PhCO, H or Ph).

Treatment of $(\pi - C_5 H_5)W(CO)_3 CH=CHCOPh$ with Fe₂(CO)₉ afforded LXXIX, LXXX and LXXXI, and with Re(CO)₅CH=CHCOMe, LXXXII was obtained. The formation of a metal-iron bond depended on the presence of a double bond adjacent to M. Thus, reaction of $(\pi - C_5 H_5)Fe(CO)_2COCH=CHR$ (R = H or Ph) with Fe₂(CO)₉ gave the $(\pi - C_5 H_5)Fe(CO)_2$ -analog of LXXX, but at 60° in benzene (R = Ph) this was decarbonylated giving LXXVIII (R = Ph). However, UV irradiation of the $(\pi - C_5 H_5)Fe(CO)_2$ -analog of LXXX afforded the corresponding analog of LXXXI. The ¹H NMR spectral degeneracy of the butadienyl protons in $[(\pi - C_5 H_5)Fe(CO)_2]_2C_4H_4$ could be removed ¹⁶¹ by recording the spectrum in C₆D₆ or in C₆D₅CD₃, and at 100 MHz the AA'BB' resonances could be clearly observed confirming the static nature of the complex.

In acetonitrile, $(\pi - C_5 H_5)Fe(CO)_2 R$ (R = Me, Et or i-Pr) reacted ¹⁶² with PR'₃ giving $(\pi - C_5 H_5)Fe(CO)(PR'_3)COR$. The ¹H NMR spectral studies provided evidence for diastereotopic shielding by an asymmetric iron atom and the kinetic measurements of acyl formation were interpreted in terms of an intermediate which was not specifically solvated, in contrast to previous suggestions¹⁶³. Reaction of $(\pi - C_5 H_5)Fe(CO)_2 R$ (R = Et or i-Pr) with L (PPh₃ or PPhMe₂) in the presence of Ph₃C⁺ gave [($\pi - C_5 H_5$)Fe(CO)₂L]⁺.

There was no evidence for β -abstraction of H⁻. Treatment of $(\pi$ -C₅H₅)Fe(CO)(PPh₃)Me with P(OR)₃ (R = Me, n-Bu or Ph) afforded¹⁶⁴ $(\pi$ -C₅H₅)Fe(CO)[P(OR)₃]Me which gave, in liquid SO₂, $(\pi$ -C₅H₅)Fe(CO)[P(OR)₃]SO₂Me. Reaction of $(\pi$ -C₅H₅)Fe(CO)₂Me with PPh₃ in refluxing hydrocarbon solvents gave $(\pi$ -C₅H₅)Fe(CO)(PPh₃)COMe and $(\pi$ -C₅H₅)Fe(CO)(PPh₃)Me (via decarbonylation of the acyl) but in refluxing dioxane only the acyl was formed. Similar products were obtained with $(\pi$ -C₅H₅)Fe(CO)₂Et. UV irradiation of $(\pi$ -C₅H₅)Fe(CO)(PPh₃)COR (R = Me or Et) gave the corresponding alkyls in good yield contrary to previous reports¹⁶⁵.

Reaction of $[(\pi-C_5H_5)Fe(CO)_2]^-$ with perfluorocyclopentene gave¹⁶⁶ LXXXIII and treatment of $(\pi-C_5H_5)Fe(CO)_2(m-BrC_6F_4)$ with Li(n-Bu) produced¹⁶⁷ $(\pi-C_5H_5)Fe(CO)_2$ - $(m-LiC_6F_4)$. Addition to the last of $(\pi-C_5H_5)Fe(CO)_2I$ afforded $(\pi-C_5H_5)Fe(CO)_2$ - $[\{m-\{\pi-C_5H_5Fe(CO)_2\}C_6F_4]$, which was also obtained in the reaction between $1,3-C_6F_4Br_2$ and $[(\pi-C_5H_5)Fe(CO)_2]^-$.

The reaction between $(\pi-C_5H_5)Fe(CO)_2R$ ($R = Me, CH_2Ph, p-MeC_6H_4$) and SO₂ (as solvent) occurred ¹⁶⁸ in two stages; complex + SO₂ \rightarrow intermediate \rightarrow $(\pi-C_5H_5)Fe(CO)_2S(=O)_2R$, and treatment of the product with an excess of KI afforded K⁺O₂SR⁻. This, together with ¹H NMR data, implied that the intermediate contained the Fe-OS(=O)R, rather than the Fe-S(=O)(OR), group. The X-ray crystallographic determination of $(\pi-C_5Me_5)Fe(CO)_2S(=O)_2CH_2CH=CHPh$ confirmed ¹⁶⁹ that it had the anticipated structure.

The erythro and threo isomers of $(\pi - C_5H_5)Fe(CO)_2CHDCHDCMe_3$ had ¹⁷⁰ distinct ¹H NMR spectra. The threo complex reacted with SO₂ at -50° giving $(\pi - C_5H_5)Fe(CO)_2$ - $S(=O)_2CHDCHDCMe_3$ with 80% inversion of configuration. Reaction of the same isomer with HgCl₂ at 40° afforded $(\pi - C_5H_5)Fe(CO)_2CI$ and Me₃CCHDCHDHgCl with 90% retention of configuration in the organomercurial, whereas bromination afforded $(\pi - C_5H_5)Fe(CO)_2Br$ and Me₃CCHDCHDBr with greater than 90% inversion. The reaction with HgCl₂ gave a result expected for frontside electrophilic attack of HgCl₂ on the Fe-C bond. Treatment of $[(\pi - C_5H_5)Fe(CO)_2]^-$ with (-)Ph(Me)CHCOCI afforded ¹⁷¹ (-)- $(\pi - C_5H_5)Fe(CO)_2COCH(Me)Ph$ with retention of configuration, and reaction of this with Rh(PPh₃)₃Cl gave (+)- $(\pi - C_5H_5)Fe(CO)_2CH(Me)Ph$. Insertion of SO₂ gave optically active $(\pi - C_5H_5)Fe(CO)_2S(=O)_2CH(Me)Ph$ but it was not known whether this occurred with retention or inversion of configuration. Reaction of $[(\pi - C_5H_5)Fe(CO)_2]^-$ with SO₂ and optically active PhCH(Me)Br gave the insertion product which was optically inactive.

Sulfur dioxide reacted with $(\pi - C_5 H_5)$ Fe(CO)₂CH₂C \equiv CR (R = Me or Ph) giving¹⁷² complexes containing sultine rings, $(\pi - C_5 H_5)Fe(CO)_2(C_3 H_2 RSO_2)$, LXXXIV. With $[(\pi - C_5 H_5)Fe(CO)_2 CH_2 C]_2$ the closely related LXXXV was formed. Thermolysis of LXXXIV (R = Me) gave the starting material and reaction with HCl afforded $(\pi$ -C₅H₅)Fe(CO)₂Cl, presumably via the starting material. The structure of LXXXIV was confirmed ¹⁷³ crystallographically. The species $(\pi - C_5 H_5)Fe(CO)_2 R$, $R = CH_2 CH_2 C \equiv CM_e$, reacted with SO₂ giving the complex with $R = S(=O)_2 CH_2 CH_2 C \equiv CMe$, whereas when $R = C \equiv CMe$ no reaction with SO₂ occurred and when $R = CH = C = CH_2$, CH = C = CHMeor CH=CH2, no tractable compounds could be isolated. It was concluded that sultine formation was a kinetic rather than a thermodynamic effect since $(\pi - C_5 H_5)Fe(CO)_2$ - $S(=0)_2CH_2C\equiv CMe$, obtained from the reaction of $[(\pi - C_5H_5)Fe(CO)_2]^{-}SO_2$ and MeC=CCH2Br, did not rearrange to the isomeric sultine (the sulphonate could not be obtained from the reaction of the corresponding propynyl complex and SO₂). It was apparent that the product of reaction of $(\pi - C_5 H_5)Fe(CO)_2CH_2C \equiv CPh$ was the sultine species LXXXIV (R = Ph) and not $(\pi - C_5H_5)Fe(CO)_2[OS(=O)C(Ph)=C=CH_2]^{174}$. The site for electrophilic attack would appear to be the electron-rich C=C bond and two reaction pathways were proposed (Scheme 14)^{172,173}; the second was preferred¹⁷³. Reaction of $(\pi - C_5 H_5)$ Fe(CO)₂R (R = Me or Ph) with SO₃ afforded ¹⁷⁵ the sultone species LXXXVI.

Scheme 14

Reaction of $[(\pi-C_5H_5)Fe(CO)_2]^-$, or of $[(\pi-C_5H_5)Fe(CO)_2]_2$ with $C_6F_5SO_2Cl$ afforded¹⁷⁶ $(\pi-C_5H_5)Fe(CO)_2S(=O)_2C_6F_5$, and $(\pi-C_5H_5)Fe(CO)_2Cl$, and a 1/1 product, LXXXVII, was obtained¹⁷⁷ when BF₃ was added to $(\pi-C_5H_5)Fe(CO)(PR_3)(SO_2Me)$ (R = n-Bu or Ph).

Addition of tetracyanoethylene to $(\pi - C_5 H_5)Fe(CO)LR$ gave¹⁷⁸ $(\pi - C_5 H_5)FeL_{C_2(CN)_4}COR, LXXXVIII (L = PPh_3, PBu_3, P(OPh)_3; R = Me, Et, n-Pr)$ but $(\pi - C_5 H_5)Fe(CO)(PPh_3)CH_2Ph$ afforded $(\pi - C_5 H_5)Fe(CO)L[N=C=C(CN)C(CN)_2CH_2Ph];$

similar compounds were obtained on heating LXXXVIII (R = Et). With $(\pi - C_5 H_5)$ -Fe(CO)₂CH₂CR=CR₂' (R = Me; R' = H; R = H, R' = Me) tetracyanoethylene gave LXXXIX, and $(\pi - C_5 H_5)$ Fe(CO)₂CH₂C=CR (R = Me or CH₂Fe(CO)₂($\pi - C_5 H_5$)) afforded XC.

The problem of metal-assisted cycloaddition reactions, involving electrophilic attack by SO₂ or C₂(CN)₄ on metal-carbon compounds, has been generalised ¹⁷⁹. The insertion of electrophiles, E, into Fe–C bonds could be either a concerted process:

or a stepwise process:

Route (b) in the second process is uncommon in SO₂-insertion reactions, but addition of $C_2(CN)_4$ to $(\pi - C_5H_5)Fe(CO)_2CH_2CH=CH_2$ afforded LXXXIX (R = R' = H). The
possibility that the adducts were derived by 2 + 2 addition, e.g. XCI, was excluded spectroscopically. Addition of 2,3-dicyano-5,6-dichloro-p-quinone afforded XCII, but no products were obtained with p-quinone itself, or with tetrachloro-p-quinone.

(XCIII)

Reaction of $[(\pi-C_5H_5)Fe(CO)_2]^-$ with $CH_2CH_2CHCH_2SO_2Ph$ afforded $(\pi - C_5H_5)Fe(CO)_2CH_2CH_2CH_2$, and insertion of SO₂ or C₂(CN)₄ into this complex gave XCIII or XCIV; thermolysis of XCIII afforded $(\pi - C_5H_5)Fe(CO)_2CH_2CH_2CH=CH_2$.

Each adduct could be accounted for in terms of a metal-assisted electrophilic attack on the cyclopropyl ring and subsequent collapse of this species by nucleophilic addition to the coordinated olefinic bond.

Complexes containing Group IIIB elements. Reaction of $[(\pi - C_5H_5)Fe(CO)_2]^-$ with o-carborane carboxylic acid chlorides has afforded ¹⁸⁰ a series of cyclopentadiene iron complexes CXV (Scheme 15). Iodination of these compounds released the cyclopentadienylsubstituted o-carborane, Fel₂ and CO. Using m-carborane carboxylic acid chlorides in place of their ortho analogs, species such as $(\pi - C_5H_5)Fe(CO)_2C(=O)(m-B_{10}H_{10}CH)$ were formed, and decarbonylation was effected thermally. Treatment of o-B₁₀H₁₀-(MeCCCH₂COCl) with $[(\pi - C_5H_5)Fe(CO)_2]^-$ afforded XCVI, which was decarbonylated (UV) to give XCVII. Some reactions of XCV (R = Me) and related compounds are summarised in Scheme 16.

Treatment of $Ru_3(CO)_{12}$ with potassium tripyrazolylborate, followed by halogenation, afforded¹⁸¹ [HB(pyz)₃] $Ru(CO)_2 X$ (pyz = pyrazolyl; X = Cl, Br or I). The species with X = Cl was also obtained by reaction of $[Ru(CO)_3Cl_2]_2$ with TlHB(pyz)₃. When Fe(CO)₅, $Fe_2(CO)_9$, $Fe(CO)_4I_2$, $(\pi-C_5H_5)Fe(CO)_2Cl$ or $[(\pi-C_5H_5)Fe(CO)_2]_2$ reacted with

Scheme 15

KHB(pyz)₃, the only product of importance was $[HB(pyz)_3]_2$ Fe. However, reaction of Fe(CO)₅ with KHB(pyz)₃ and MeI afforded very small yields of $[HB(pyz)_3]$ Fe(CO)₂Me. Reaction of $(\pi$ -C₅H₅)Fe(CO)₂I with 1-Li-10-Me-1,10-B₈C₂H₈ gave¹⁸² XCVIII

(R = Me) whereas with 1,10-Li₂-1,10-B₈C₂H₈, XCVIII (R = H) and XCVIII

 $(R = Fe(CO)_2(\pi - C_5H_5))$ were produced; treatment of the last with PPh₃ caused replacement of only one CO group. With 1-Li-2-R-1,2-B₁₀C₂H₁₀ (R = Me or Ph) $(\pi - C_5H_5)Fe(CO)_2I$ afforded 1- $[(\pi - C_5H_5)Fe(CO)_2]$ -2-R-1,2- $(o-B_{10}C_2H_{10})$. Reaction of FeCl₂ with $[B_{10}H_{12}CH]^-$, and Li(n-Bu) gave¹⁸³ [Fe($B_{10}H_{10}CH)_2$]³⁻ which could be oxidised or reduced polarographically in a one-electron process. Treatment of $B_{10}H_{12}CNH_3$ with Li(n-Bu) and FeCl₂ afforded Fe($B_{10}H_{10}CNH_3$)₂. Addition of CS₂

to $[Fe(1,2-B_9C_2H_{11})_2]^-$ gave¹⁸⁴ XCIX. By heating $Fe(CO)_5$ with $B_4C_2H_6$, π -C₂B₄H₆Fe(CO)₃, C, and π -C₂B₃H₇Fe(CO)₃, CI, were formed¹⁸⁵; C was less stable thermally than CI.

Adducts of $[(\pi - C_5 H_5)M(CO)_2]_2$ (M = Fe or Ru) with Al(i-Bu)_3 were formed¹⁸⁶ in heptane solution. The nature of the products was elucidated by IR spectroscopy and the spectral data were interpreted as in Scheme 17. It was suggested that the formation of the *O*-coordinated bridging CO served as a driving force for the isomerisation of the non-bridged to the bridged compounds.

The trimetallic species $[(\pi - C_5 H_5)Fe(CO)_2]_2$ InX was obtained¹⁸⁷ either by direct insertion of InX (X = Cl or Br) into $[(\pi - C_5 H_5)Fe(CO)_2]_2$ or by treatment of Hg $[(\pi - C_5 H_5)Fe(CO)_2]_2$ with the indium(I) halide.

Compounds containing Si, Ge or Sn atoms. Reaction of SiHCl₃ with $[(\pi-C_5H_5)-Fe(CO)_2]_2$ afforded¹⁸⁸ $(\pi-C_5H_5)Fe(CO)_2SiCl_3, (\pi-C_5H_5)Fe(CO)H(SiCl_3)_2, [(\pi-C_5H_5)Fe(CO)_3]^+ [(\pi-C_5H_5)Fe(CO)(SiCl_3)_2]^- and <math>[(\pi-C_5H_5)Fe(CO)_3]^+ [FeCl_4]^-$. The relative yields of these products were dependent on reaction temperature. The hydride was an acid in MeCN $(pK_a \text{ ca. } 2.6)$ and was stronger in that solvent than HClO₄; $[(\pi-C_5H_5)Fe(CO)_2SiCl_3]^-$ was the anion derived from the acidic hydride. Treatment of $(\pi-C_5H_5)Fe(CO)_2SiCl_3$ with AgBF₄ or AgPF₆ afforded¹⁸⁹ $(\pi-C_5H_5)Fe(CO)_2SiF_3$. Polarographic reduction of the $(\pi-C_5H_5)Fe(CO)_2SiCl_3$ in acetonitrile occurred¹⁹⁰ in two steps, and the processes appeared to correspond to stripping of the Cl⁻ ions from the Si atom; $(\pi-C_5H_5)Fe(CO)H(SiCl_3)_2$ could also be polarographically reduced.

Photo-decarbonylation of $[(\pi-C_5H_5)Fe(CO)_2]_2GePh_2$ afforded¹⁹¹ $(\pi-C_5H_5)Fe(CO)-(\mu-CO)(\mu-GePh_2)Fe(CO)(\pi-C_5H_5)$, and a similar product was obtained with the diphenylsilyl derivative. The compounds existed as *cis* or *trans* isomers (with respect to the C₅H₅ ring), and these did not rapidly interconvert in solution. It was shown¹⁹² by ¹H NMR spectroscopy that the π -C₅H₅ rings in $[(\pi-C_5H_5)Fe(CO)_2]_2Ge(C_5H_5)_2$ were stereochemically rigid and did not exchange with the other rings attached to the Ge atom, although these were fluxional.

In exchange reactions between $(\pi-C_5H_5)Fe(CO)_2SnMe_3$ and $SnMe_3(CF_3)$, the starting materials, $(\pi-C_5H_5)Fe(CO)_2SnMe_2(CF_3)$, and $SnMe_4$ were recovered¹⁹³. Reaction of $(\pi-C_5H_5)Fe(CO)_2SnR_3$ (R = Me, Ph or Cl) with L under UV light gave¹⁹⁴ $(\pi-C_5H_5)Fe(CO)L(SnR_3)$ (L = PPh₃, AsPh₃, SbPh₃, f₆ fos, PMePh₂, PMe₂Ph, P(CF₃)Ph₂, As(CF₃)Ph₂) and $(\pi-C_5H_5)FeL_2(SnR_3)$ (R = Me or Ph, L = PMePh₂, PMe₂Ph, or SbPh₃). The Mössbauer isomer shift for both Fe and Sn became more positive on introduction of L. The IR spectra indicated the presence of rotational isomers in

some species. The X-ray crystal structure determination¹⁹⁵ of $(\pi$ -C₅H₅)Fe(CO)-(f₆fos)SnMe₃ revealed that there was no significant shortening of the Fe–Sn bond relative to the dicarbonyl analog.

Reaction of $[(\pi-C_5H_5)Fe(CO)_2]^-$ with SnPh_nCl_{3-n} afforded ¹⁹⁶ $(\pi-C_5H_5)Fe(CO)_2^-$ SnPh_nCl_{3-n}(n = 1, 2 or 3). The sign of the Mössbauer quadrupole coupling constant for ¹¹⁹Sn in $(\pi-C_5H_5)Fe(CO)_2SnX_3$ (X = Cl or n-Bu) and $[(\pi-C_5H_5)Fe(CO)_2]_2SnX_2$ (X = Cl or NCS) was positive ¹⁹⁷ except when X = n-Bu when it had a small negative value, and the sign for Fe was positive in all cases. The Mössbauer spectra of the products of insertion reaction of SnX₂ (X = Cl, Br, I, NCS, formate, acetate) with $[(\pi-C_5H_5)Fe(CO)_2]_2$ and $(\pi-C_5H_5)Fe(CO)_2Cl$ were compared ¹⁹⁸ with those obtained by the replacement of Cl from $[(\pi-C_5H_5)Fe(CO)_2]_2SnCl_2$ and $(\pi-C_5H_5)Fe(CO)_2SnCl_3$.

Insertion of SO₂ into the Sn–C bond in $[(\pi-C_5H_5)Fe(CO)_2]_2SnPh_2$ afforded¹⁹⁹ $[(\pi-C_5H_5)Fe(CO)_2Sn(OSOPh)_2$, also obtained from $[(\pi-C_5H_5)Fe(CO)_2]_2SnCl_2$ and NaSO₂Ph. Similarly, $(\pi-C_5H_5)Fe(CO)_2[SnPh(OSOPh)_2]$ was obtained from the SnPh₃ derivative or by reaction of $(\pi-C_5H_5)Fe(CO)_2SnPhCl_2$ with NaSO₂Ph (in the latter reaction $(\pi-C_5H_5)Fe(CO)_2[SnPh(OH)(OSOPh)]$ was also formed). Treatment of the disulphinate with ethanol gave $(\pi-C_5H_5)Fe(CO)_2[SnPh(OH)(OSOPh)]$ which further reacted with HCl yielding $(\pi-C_5H_5)Fe(CO)_2SnCl_3$. It was established²⁰⁰ that the hydroxo complex was binuclear in the solid state, with a Sn(OH)₂Sn bridging system. While $[(\pi-C_5H_5)Fe(CO)_2]_2SnCl_2$ did not react with SO₂, the corresponding SnMe₂ complex afforded $(\pi-C_5H_5)Fe(CO)_2SO_2Me$.

Compounds containing Hg atoms. Treating $[(\pi-C_5H_5)Fe(CO)_2]^-$ with Hg(C₆F₅)Br afforded²⁰¹ (π -C₅H₅)Fe(CO)₂Hg(C₆F₅). This compound was also obtained²⁰² by reaction of (π -C₅H₅)Fe(CO)₂HgCl with LiC₆F₅. However, in solution, the equilibrium:

 $Hg[Fe(CO)_{2}(\pi - C_{5}H_{5})]_{2} + HgX_{2} \rightleftharpoons 2(\pi - C_{5}H_{5})Fe(CO)_{2}HgX$

lay far to the right when X = halogen, but far to the left when X = organo group. Thus, treatment of $(\pi - C_5 H_5)Fe(CO)_2HgCl$ with Li(n-Bu) afforded Hg[Fe(CO)_2 $(\pi - C_5 H_5)$]₂, Hg(n-Bu)₂ and LiCl. It would appear that in this reaction Li⁺[$(\pi - C_5 H_5)Fe(CO)_2$ -Hg(n-Bu)₂]⁻ and LiFe(CO)₂($\pi - C_5 H_5$) were formed, and indeed treatment of the latter with SnPh₃Cl afforded ($\pi - C_5 H_5$)Fe(CO)₂SnPh₃.

Olefin complexes

Monoolefin species. Photolysis of $Fe(CO)_5$ and C_2H_4 in an argon matrix gave²⁰³ $(C_2H_4)Fe(CO)_4$. With acetylene, an iron complex containing $H_2C=CHC\equiv CH$ was formed. Reaction of $Fe_2(CO)_9$ with PhCH(Me)N=CHCO_2Et, Q, afforded²⁰⁴ low yields of QFe(CO)_4 (bonding via C=N system) and Fe(CO)_5. Tetramethoxyethylene reacted²⁰⁵ with $Fe_2(CO)_9$ giving $[C_2(OMe)_4]Fe(CO)_4$.

The vinylic tertiary phosphine, $o \cdot C_6 H_4(CH=CH_2)(PPh_2)$, SP, reacted with $M_3(CO)_{12}$ (M = Fe or Ru) giving²⁹⁶ M(CO)₃SP, CII, and M(CO)₂(SP)₂, CIII. The molecular structure of CIII (M = Fe) was determined crystallographically and the C=C distance (1.45 Å) was significantly longer than that in an uncoordinated vinyl group (1.33 Å).

The crystal structure determination²⁰⁷ of $(Ph_2C=C=C=CPh_2)Fe(CO)_4$, CIV, revealed that the Ph_2C-C-C bond angle was 151°, that the hydrocarbon chain lay in the equatorial plane of a trigonal bipyramidal molecule, and that the three "C=C" distances were equal (1.34 Å).

Non-cyclic diene complexes. Iron tricarbonyl complexes of a series of optically active monoolefinic acids and diolefinic aldehydes and acids have been resolved²⁰⁸ and the CD spectra of the complexes compared with those of the free ligands. The pK_a values of CV (R¹ = Me, R² = CO₂H; R¹ = H, R² = p-NH₂C₆H₄) have been compared²⁰⁹ with those of the free olefins and it was established that the Fe(CO)₃ group somewhat reduced the electron-withdrawing properties of the diene moiety.

Reaction of diene-Fe(CO)₃ with HCl afforded (π -allylic)Fe(CO)₃Cl complexes. It has been proposed²¹⁰ that incorporation of the proton (deuteron) occurs at the *syn* methyl group exclusively (Scheme 18). However, it has been shown²¹¹ (Scheme 19) that

deuteriation occurs exclusively at the *anti*-methyl group. Deuteriation of $C_6H_8Fe(CO)_3$ in CF_3CO_2D afforded a dideuteriated product which was apparently formed reversibly but stereospecifically (Scheme 20). Deprotonation of the dideuteride gave CVI which

Scheme 20

afforded CVII (Scheme 20) on reaction with Ph_3C^+ . These experiments showed that H⁻ abstraction and H⁺ addition occurred from opposite sides of the hydrocarbon ligand, and that protonation was *endo* with respect to the Fe(CO)₃ group.

The behaviour of the complexes CVIIIa and CVIIIb in acid media, where π -pentadienyl cations are formed^{212,213} is summarised in Scheme 21. There was no interconversion of CIX and CX at -30° , but this occurred at 0° , and quenching either CIX or CX with aqueous NaHCO₃ gave only CVIIIa. The solvolysis of CXI gave the *trans* cation, CXII. It would appear that solvolysis of these alcohols CVIII occurs²¹³ primarily via the *trans*-pentadienyl cation, CXIIIa or b. Protonation of CXIV afforded initially the *trans* cation CXV which isomerised to the *cis* form, CXVI; the equilibrium constant for the CXV \approx CXVI conversion was 3.0 ± 0.3 at 50° , clearly favoring the *trans* isomer. It was

suggested²¹⁴ that the solvolyses of CVII and CVIII, and their ester, were very similar to those of the corresponding ferrocenyl derivatives and proceeded via cations which were stabilised by Fe–C hyperconjugation. Nucleophilic attack by primary amines on the pentadienyl cation CXVII afforded²¹⁵ the diene complexes CXVIII or CXIX. It was concluded that strongly basic amines (pK_b ca. 3-6) gave products determined by kinetic

control (e.g. CXVIII) whereas the weakly basic amines $(pK_b \ 10)$ gave products determined by thermodynamic control (e.g. CXIX); p-toluidine $(pK_b \ 8.9)$ exhibited intermediate behaviour.

In a study of the mechanism of interconversion of shift isomers of iron tricarbonyl complexes of 1,6-disubstituted hexatrienes and 1,8-disubstituted octatetraenes, it was established²¹⁶ that the substituents had a relatively small electronic effect on the position of equilibrium (Scheme 22), that the substituents exhibited a somewhat greater effect on the rate of interconversion of isomers, and that, contrary to previous suggestions²¹⁷, the movement of Fe(CO)₃ from one en ' to the other of the polyene could occur without obligatory formation of intermediate species.

The synthesis and interconversion of CXX and CXXI has been studied²¹⁸. Heating of these caused loss of optical activity by a first order concentration independent process; the rate constants for both isomers were similar. Formation of the *meso* complex was

Scheme 22

the major, if not only, pathway to racemisation; the proposed mechanism is shown in Scheme 23.

Reaction of B(OR)(CH=CH₂)₂ with Fe₂(CO)₉ afforded²¹⁹ initially B(OR)(CH=CH₂)₂-Fe(CO)₄ which, on UV irradiation, rearranged to give CXXII.

 $(Fe(CO)_3 \text{ and } CO_2 Me \text{ omitted for clarity})$

Scheme 23

Cyclic diene complexes. Treatment of $Fe_2(CO)_9$ with $C_5H_4(Me)CH_2OH$ afforded²²⁰ CXXIII and CXXIV whereas with $C_5H_4(Me)CO_2Et$ only the endo carboxylate ester (analogous to CXXIII) was formed. Ring expansion of CXXV, giving CXXVI, occurred²²¹ when the former was treated with acetic anhydride, HBF₄ and water, but the endotosylate decomposed under similar conditions. The synthesis of (7-norbornadienone)-Fe(CO)₃²²², CXXVII, and some of its reactions, are summarised in Scheme 24. CXXVII underwent relatively normal organic reactions associated with the keto group, in which the Fe(CO)₃ moiety was retained. Reaction of CXXVIII with Fe₂(CO)₉ afforded²²³ CXXIX. Dechlorination of CXXX by Fe₂(CO)₉ did not give CXXIX, and only CXXXI was isolated. Reaction of CXXXII with iron carbonyls afforded²²⁴ CXXXIII; one Fe(CO)₃ group (adjacent to the ether ring) could be selectively removed under mild Ce⁴⁺ oxidation, but under more stringent conditions all Fe could be eliminated.

Reaction of $[Ru(CO)(C_7H_8)Cl_2]_2 (C_7H_8 = norbornadiene)$ with HCl in acetone in the presence of $[PPh_3(CH_2Ph)]^+$ afforded²²⁵ $[Ru(CO)(C_7H_8)Cl_3]^-$ whereas, with $[AsPh_4]^+$ and Cl^- , *cis*- $[Ru(CO)_2Cl_4]^{2-}$ was precipitated. Similar treatment of $[Ru(CS)(PPh_3)_2Cl_2]_2$ gave $[Ru(CS)(PPh_3)_2Cl_3]^-$.

Cyclic tri- and tetra-ene complexes. Use of Eu^{III} shift reagents with Fe(CO)₃ complexes of cyclohepta-dienone and -trienone, and with CXXXIV, confirmed²²⁶ their ¹H NMR spectra assignments.

Cycloocta-1,3-diene (C_8H_{12}) reacted²²⁷ over 8 hours with $Ru_3(CO)_{12}$ to form $C_8H_{12}Ru(CO)_3$ and the three isomers of C_8H_{12} , but after 10 hours a second isomer of $C_8H_{12}Ru(CO)_3$, containing a $Ru-C\sigma$ -bond and a π -allylic group, was isolated. It has been reported²²⁷ that the 1,5-diene gave $C_8H_{12}Ru_3(CO)_n$ (n = 9 or 10). UV irradiation of 1,3- C_8H_{12} with $Os_3(CO)_{12}$ resulted in the formation of pure (1,3- $C_8H_{12}Os(CO)_3$ whereas the 1,5-diene produced a mixture of 1,5- and 1,3-diene complexes. Some reactions of these compounds and their iron analogs are shown in Scheme 25. Hydride abstraction of (1,5- C_8H_{12})Ru(CO)₃ afforded²²⁸ a cation which underwent nucleophilic attack by CN⁻ giving CXXXV. The ring in this complex was extensively folded to permit the four C-atom attachment, and the CN group location implied that nucleophilic attack on the intermediary cation occurred from the *exo* direction.

Reaction of cyclooctatetraene oxide, C_8H_8O with $Fe_2(CO)_9$ or $Fe_3(CO)_{12}$ afforded²²⁹ $C_8H_8OFe_2(CO)_6$ and $(C_7H_8CHO)Fe(CO)_3$. The ¹H NMR spectrum of the former was temperature independent and the compound could be represented as CXXXVIa or b. Its thermolysis, under conditions in which the free epoxide was inert, afforded $C_8H_8Fe(CO)_3$, trans- $C_8H_8Fe_2(CO)_6$ and $C_8H_8Fe_2(CO)_5$. The crystal

Ph

structure determination²³⁰ of (3-acetyl-1-H-azepine)iron tricarbonyl revealed that the dihedral plane between the *cis*-dienoidal $Fe(CO)_3$ fragment and the remaining NC group was 141°.

-196°

It has been suggested that protonation of $C_8H_8Fe(CO)_3$ afforded initially the cyclooctatrienylium cation stabilised by $Fe(CO)_3$, and that this subsequently underwent

Ph₃L

(L = P, As or Sb)

+ $Fe(CO)_3(LPh_3)_2$

ring closure to give bicyclo [5.1.0] octadienium irontricarbonyl cation. The related Ru and Os complexes behaved differently²³¹, the initially formed bicyclic cation, CXXXVII, undergoing ring opening (Scheme 26) giving CXXXVIII. In ether/water mixtures, CXXXVII isomerised to CXXXVIII. However, protonation in HBF/acetic anhydride led to the formation of both CXXXVII, and a new isomer, CXXXIX. Treatment of CXXXVIII or CXXXIX with CN⁻, or [CH₂NO₂]⁻ afforded CXL. Protonation of C₈H₈Os(CO)₃ (α -form) gave two isomers of [C₈H₉Os(CO)₃]⁺, one of which was isostructural with CXXXVIII/CXXXIX, and the other with CXXXVII. The iron complex did not behave similarly.

The electrophilic substitution and addition reactions of $C_8H_8Fe(CO)_3$ are summarised²³² in Scheme 27. The formylation reaction, giving $(C_8H_7CHO)Fe(CO)_3$, would appear to be one of electrophilic substitution whereas acetylation, giving CXLI and CXLII, would appear to be electrophilic addition, which probably reflects the differences in mechanisms of reaction for the two processes. The preference of a metal-stabilised homotropylium intermediate (CXLI) over a cyclooctatrienium species, CXLII, was rationalised in terms of a maximisation of the overlap of the $p\pi$ orbitals in the C_5 fragment and a removal of steric strain in the uncoordinated double bound of the hypothetical CXLIII by rearrangement. This type of ring closure was a first order process and was regarded²³³ as an electrocyclic reaction.

Wideline ¹H NMR spectra studies of $C_8H_8Fe(CO)_3$ in the solid state revealed²³⁴ that molecular motion, involving apparently simultaneous distortion and reorientation of the hydrocarbon ring, occurred. Similar studies of $C_8H_8Fe_2(CO)_5$ revealed that it was rigid in the solid state, as in solution.

The synthesis of heptafulvene irontricarbonyl, and its monodeuterio analog, has been achieved²³⁵ (Scheme 28). The compound dimerised slowly at room temperature, gave a 1/1 adduct with MeO₂CC=CCO₂Me, and was protonated in CF₃CO₂H. Alkyl and aryl heptafulvene complexes have also been prepared²³⁶ (Scheme 28). In the species where $R^{1} = H, R^{2} = Ph$, two isomers, determined by the position of the Ph group with respect to the Fe(CO)₃ moiety, were detected.

Displacement of cyclooctatetraene from $C_8H_8Fe(CO)_3$ by terpyridyl (terpy) or $MeC(CH_2PPh_2)_3$ (triphos) afforded²³⁷ Fe(CO)₂(terpy) and Fe(CO)₂(triphos), but at lower temperatures, Fe(CO)₃(triphos), in which one PPh₂ group was uncoordinated, was obtained. The reactions of $C_8H_8Ru(CO)_3$ with PR₃ were interpreted²³⁸ in terms of a

Scheme 28

mechanism involving bimolecular attack of PR₃ on the substrate, e.g. $C_8H_8Ru(CO)_3$ + PR₃ $\rightarrow C_8H_8Ru(CO)_3(PR_3) \xrightarrow{+PR_3, \text{ fast}} trans-Ru(CO)_3(PR_3)_2 + C_8H_8.$

Bis-olefin complexes. Photolysis of $Fe(CO)_5$ gave $Fe(CO)_4$ which reacted²³⁹ with trans-buta-1,3-diene giving $(trans-C_4H_6)Fe(CO)_3$, and $(cis-C_4H_6)Fe(CO)_3$; with further C_4H_6 , eventually $(C_4H_6)_2Fe(CO)$ was formed. Similar products were obtained²⁴⁰ with isoprene and cyclohexa-1,3-diene. These complexes catalysed the trimerisation of C_4H_6 , and, in the presence of PR₃, the formation of cyclooctadiene and vinylcyclohexene. The molecular structure determination of $(C_6H_8)_2Fe(CO)$ revealed²⁴¹ that the two rings differed in conformation and in their bonding to Fe by amounts too large to be accounted for by experimental errors. It was suggested that the bonding could be represented as in CXLIV. $(C_4H_6)_2Fe(CO)$ and $(C_4H_6)(C_8H_8)Fe(CO)$ could be prepared²⁴² by mild carbonylation of the catalytic solution used for butadiene

oligomerisation (FeCl₃, i-PrMgCl, Et₂O and C₄H₆); $(C_8H_8)_2$ Fe reacted with C₄H₆ and CO to give $(C_4H_6)(C_8H_8)$ Fe(CO).

Azulene and acetylenic derivatives. Azulene reacted with $Ru_3(CO)_{12}$ giving²⁴³ $C_{10}H_8Ru_3(CO)_7$, CXLV, which was unlike $C_{10}H_5Me_3Ru_4(CO)_9^{244}$. The azulene ligand had "slipped along the triangular Ru_3 bonding face towards Ru^{1} ", and the bonding of Ru^2 and Ru^3 to the large ring could seem to involve two individual olefin bonds and a

three-center MO involving one C atom and Ru^2 and Ru^3 . It was suggested that this structure was an intermediate in the formation of $C_{10}H_8R_3Ru_4(CO)_{10}$, the reaction proceeding via displacement of the bridging CO by $Ru(CO)_3$ or a related fragment, with concomitant rearrangement of the Ru-Ru bonds.

Reaction of $Fe_3(CO)_{12}$ with t-BuC=C-t-Bu afforded²⁴⁵ (C₁₀H₁₈)₂Fe₂(CO)₄, CXLVI. The two Fe atoms and 4 CO groups were in the same basal plane and the two acetylenes

formed a plane normal to this. The Fe-Fe distance was very short (2.22 Å) and the C-C-t-Bu bond angle was 143°. The bonding was consistent with the sharing of two electron pairs, donated by the acetylenes, with each Fe atom. Treatment of $(Ph_2C_2)_2Os_3(CO)_8$ with CO gave²⁴⁶ $(Ph_2C_2)_2Os_3(CO)_9$ formulated as either CXLVII and CXLVIII. This compound reacted with halogens giving $(Ph_2C_2)_2Os_2(CO)_5X_2$ (X = Cl, Br or I) in which all CO groups were terminal.

Allyl, dienyl, and trimethylenemethane complexes

Allylic complexes. Treatment of the allene compound, $(Me_2C=C=CMe_2)Fe(CO)_4$ with HBF₄ afforded²⁴⁷ the π -allylic species $[(\pi-C_3HMe_4)Fe(CO)_4]^+$. Friedel-Crafts acylation or benzoylation of the allene compound afforded $[\{\pi-C_3Me_4(COR)\}Fe(CO)_4]^+$ (R = Me or Ph). Deprotonation and loss of a CO group occurred on warming these cations, and CXLIX was formed. The kinetics of substitution of $(\pi-C_3H_5)Fe(CO)_2(NO)$ by PR₃ (phosphine or phosphite), which afforded $(\pi-C_3H_5)Fe(CO)(PR_3)(NO)$, have been studied²⁴⁸, and the rates of substitution were little affected by solvent polarity or by basicity or polarisibility of PR₃, but were altered by steric bulk.

The mass spectral fragmentation pattern of $(\pi - C_3H_4R)Fe(CO)_3X$ (X = halogen or NO₃) indicated²⁴⁹ that decomposition proceeded via rupture of Fe–CO and Fe–X bonds primarily, and the ratio of intensities of peaks characterising ions formed in the processes depended on the nature of R and X. In acetonitrile $(\pi - C_3H_4R)Fe(CO)_2(NO)$ (R = 1- or 2-Me, 1- or 2-Cl, 2-Br or H) exhibited²⁵⁰ two polarographic reduction waves whose *E*-values depended on the nature and position of R. The principal products of electrochemical reduction were [Fe(CO)₃(NO)]⁻ and an olefin derived from the allylic group (see Scheme 29). Borohydride reduction of $(\pi$ -allyl)Fe(CO)₃(NO) also gave [Fe(CO)₃(NO)]⁻.

Treatment of $(\pi - C_3 H_5)$ Fe(CO)₃I with β -diketones in the presence of NHEt₂ afforded²⁵¹ (π -allylic)Fe(β -diketonate)₂, CL (R = Me, Ph or thienyl-CF₃). Similar reactions with $[(\pi - C_5 H_5)_2 Fe]^+$ and $[(\pi - C_5 H_5)(\pi - C_6 H_6)Fe]^+$ produced $(\pi - C_5 H_5)$ Fe(β -diketonate)₂ and Fe(β -diketonate)₃.

Reaction of $(\pi - C_4H_7)_2 \operatorname{Ru}(C_8H_{12})$ ($C_8H_{12} = \operatorname{cycloocta-1},5$ -diene) with L (phosphite or Me₂PCH₂CH₂PMe₂) gave²⁵² (π -C₄H₇)₂RuL₂. The ¹H NMR spectra showed that the allylic groups were asymmetrically bound to Ru and that the species probably have structures CLIa or b. Reaction of (π -C₄H₇)₂RuL₂ with CO gave Ru(CO)₃L₂ (L = P(OMe)₃ or P(OEt)₃). However, sodium amalgam reduction of (π -C₄H₇)Ru(CO)₃Br

in the presence of allyl bromide afforded $(\pi - C_4 H_7)_2 Ru(CO)_2$, and this could also be obtained²⁵³ by treatment of $[Ru(CO)_3 Br_2]_2$ with $SnMe_3(CH_2CH=CH_2)$. The behaviour of the ¹H NMR spectrum of this compound over a temperature range indicated that, in addition to a *syn-anti* proton exchange at high temperatures, the allyl groups engaged in a rapid intramolecular rearrangement at room temperature which could be rationalised on the basis of a "twist" mechanism.

The molecular structure determination²⁵⁴ of $C_7H_8Fe_2(CO)_6$, CLII, confirmed earlier predictions²⁵⁵ that it contained two π -allylic groups. The Fe—Fe distance (2.87 Å) was longer than in any similar hydrocarbon $Fe_2(CO)_x$ species. The structure contrasted with those of $C_8H_8Ru_2(CO)_6$ and $C_8H_{10}Fe_2(CO)_6$ where the M-M axes were turned nearly 90° towards the direction of a possible mirror plane analogous to that in $C_7H_8Fe_2(CO)_6$.

Reaction of bullvalene with $Fe_2(CO)_9$ gave²⁵⁶ CLIIIa and its enantiomer, b, together with $C_4H_4Fe_2(CO)_6$ and six isomers of $C_{10}H_{10}Fe_2(CO)_6$. One of these isomers

(CLII)

(CLV)

(CLVI)

(CLIV)

(CLVIII)

proved²⁵⁷ to be CLIV and its enantiomer which mutually interconverted as indicated by ¹H NMR spectral studies. The diene, CLV, which has been proposed as an intermediate in the thermally induced conversion of bullvalene into naphthalene, afforded²⁵⁸ with Fe₂(CO)₉ CLVI and its enantiomer (similar to CLIIIb); ¹H NMR spectral studies showed that these enantiomers mutually interconverted above 0°. By heating CLVI at 120°, CLVII was formed²⁵⁹, but this molecule was not an intermediate in the thermally induced isomerisation of (bicyclo[4.2.2] deca-2,4,7,9-tetraene)[Fe(CO)₃]₂ to (9,10-dihydronaphthalene)[Fe(CO)₃]₂. Treatment of CLVIII with Fe₂(CO)₉ gave²⁶⁰ CLIX.

Reaction of $(CF_3)_2CO$, $(NC)_2C=C(CF_3)_2$ or $(F_3C)(NC)C=C(CN)(CF_3)$ with cycloheptatriene irontricarbonyl gave²⁶¹ 1/1 adducts, and the structure of the tetracyanoethylene adduct, CLX, has been determined²⁶². Similar 1,3 addition products were obtained with azepine iron- or ruthenium-carbonyls, but with the Fe species a 1,6 addition product was also discovered (Scheme 30).

Scheme 30

The crystal structure elucidation of the complex formed by reaction²⁶³ of $RuCl_3$ with isoprene revealed²⁶⁴ that the molecule, CLXI, was dimeric, with chlorine bridges.

The coordination geometry around the metal atoms was trigonal bipyramidal and two equatorial positions were occupied by the terminal allylic groups. Reaction of $Ru_3(CO)_{12}$ with cyclododecatriene afforded²⁶⁵ four complexes, one of which was identified crystallographically²⁶⁶ as CLXII, $Ru_3(CO)_9H(C_{12}H_{15})$; the non-bridged Ru-Ru distances were 2.78 Å and the hydride-bridged Ru-Ru bond length was 2.93 Å.

Dienyl complexes. Reaction of the diene CLXIII with $Fe_3(CO)_{12}$ gave²⁶⁷ CLXIV which reacted with LiMe giving CLXV. Kinetic studies have been made²⁶⁸ of the reactions between cationic cyclic dienyl complexes of Fe and Os carbonyl derivatives and β -diketones, in which the neutral diene species were formed. There appeared to be a

rapid pre-equilibrium dissociation of the β -diketone to yield a reactive carbanion which then attacked directly the coordinated dienyl group in a rapid, rate-determining, step. The order of reactivity towards the β -diketone (acetylacetone or dimedone) was (most reactive first)

$$\begin{split} [C_{6}H_{7}Os(CO)_{3}]^{+} &\geq [C_{6}H_{7}Fe(CO)_{3}]^{+} > [C_{6}H_{7}Fe(CO)_{2}(PPh_{3})]^{+} \\ &> [C_{7}H_{9}Fe(CO)_{3}]^{+} > [(C_{6}H_{6}OMe)Fe(CO)_{3}]^{+} \\ &\implies C_{7}H_{9}Fe(CO)_{2}I, C_{7}H_{9}Fe(CO)_{2}CN, (C_{6}H_{6}OMe)Fe(CO)_{2}I. \end{split}$$

The similarities in rates for the Fe and Os complexes argued against a common mechanism in which the metal was directly involved in the rate-controlling process. There was a two-fold decrease in rate on replacing CO by PPh₃ which was consistent with the increased electron-donating properties of PPh₃ relative to CO and the consequential reduction of the residual positive charge on the dienyl ring (it was therefore less susceptible to nucleophilic attack). Addition at the cycloheptadienyl ring was slower than at the cyclohexadienyl ring, possibly because of steric factors associated with methylene groups. The neutral dienyl complexes were hardly attacked indicating that the positive charge was essential for reactivity.

The ¹H NMR spectral behaviour of $[C_7H_7Fe(CO)_3]^+$ indicated²⁶⁹ that the molecule was fluxional at $-50 \pm 10^\circ$. Treatment of cycloheptatriene irontricarbonyl with Li(n-Bu) afforded²⁷⁰ the non-rigid anion $[C_7H_7Fe(CO)_3]^-$ which is isoelectronic with $C_7H_7Co(CO)_3^{271}$.

Allene complexes. Allene treated at 85-90° with $Fe_3(CO)_{12}$ afforded²⁷² CLXVI, $C_9H_{12}Fe_2(CO)_6$, which could also be obtained from the allene dimer complex, $C_6H_8Fe_2(CO)_6$ and allene. At 120° the reaction afforded CLXVII which could be obtained from CLXVI by thermal isomerisation and has been described previously²⁷³.

The third complex, CLXVIII was obtained by a thermal isomerisation of CLXVI or CLXVII. The structure of CLXVII was determined crystallographically²⁷².

Trimethylenemethane complexes. UV irradiation of trimethylenemethane irontricarbonyl with C_2F_4 afforded²⁷⁴ CLXIX. With C_2F_3X (X = F or CF₃), $C_4H_5RFe(CO)_3$ (R = H or Me) gave CLXX. Cinnamaldehyde complexes of Fe(CO)₃ or Fe(CO)₄ reacted

 $\begin{array}{c} H_2 \\ F_2 \\ F_2 \\ F_2 \\ (CO)_3 \\ (CLXIX) \end{array}$

with C_2F_4 giving CLXXI and $(\pi$ - $C_4Me_4)Fe(CO)_2OC(CF_3)_2$ gave with $P(OMe)_3$ CLXXII. In the last case, the action of $P(OMe)_3$ led to a linking of a C atom of the coordinated $(CF_3)_2CO$ to the C_4 ring.

3

Me

(CLXXII)

Reaction of 1- or 2-bromomethylnaphthalene with $Fe_2(CO)_9$ gave²⁷⁵ CLXXIII and CLXXIV.

Arene and related complexes

Treatment of bis- π -indenyl iron with BF₃OEt₂ gave²⁷⁶ CLXXV which could be hydrogenated to give CLXXVI. The latter could be prepared also by treatment of $(\pi$ -C₅H₃C₆H₈)₂Fe with AlCl₃ and indane.

Improved syntheses of $[(\pi - C_6H_6)_2Fe]^{2+}$ and related species have been developed²⁷⁷. Reduction of these complexes with LiR afforded²⁷⁸ initially, for example, $[(\pi - C_6H_6)(C_6H_6R)Fe]^+$, and $(C_6H_6R)_2Fe$. From these complexes, aromatic hydrocarbons were recovered on oxidation with KMnO₄ or Ce⁴⁺, or on heating (Scheme 31).

Thus, the synthesis of substituted aromatic hydrocarbons could be achieved via Fe complexes, viz. arene $\rightarrow [(\pi$ -arene)₂Fe]²⁺ $\rightarrow (\pi$ -areneR)₂Fe \rightarrow R-substituted arene.

It has been shown²⁷⁹ that the ¹H NMR spectra of $(C_6H_3Me_3R)_2Fe$ are temperature dependent and can be interpreted in terms of the equilibrium CLXXVIIa \Rightarrow CLXXVIIb.

The molecular structure determination of $(\pi - C_6 Me_6)_2 Ru$ showed²⁸⁰ that one ring was planar whereas the other was essentially dienoidal, with a free double bond whose plane formed a dihedral angle with the C₄ plane of 42.8°.

(CLXXVII)

(CLXXVIII)

(CLXXIX) (R = H, Me or Ph)

(CLXXX)

(CLXXXII)

Cyclobutadiene complexes. The mixed isomers of $C_4Me_2(i-Pr)_2Cl_2$ and of $C_4Me_3(i-Pr)Cl_2$ reacted²⁸¹ with $Fe_2(CO)_9$ giving CLXXVIII and $[\pi-C_4Me_4(i-Pr)]Fe(CO)_3$. Whereas $[(\pi-C_4R_4)PdX_2]_2$ (R = Ph, p-ClC₆H₄, p-MeC₆H₄ or p-MeOC₆H₄) reacted²⁸² with $(\pi-C_5H_5)Fe(CO)_2Br$ giving $[(\pi-C_4R_4)(\pi-C_5H_5)Pd]^+$, reaction with $Ru_3(CO)_{12}$ afforded $(\pi-C_4Ph_4)Ru(CO)_3$. Treatment of $[(\pi-C_4R_4)NiX_2]_2$ with $Fe(CO)_5$ afforded the corresponding $(\pi-C_4R_4)Fe(CO)_3$. An IR spectral study of $(\pi-C_4RR^1R^2R^3)Fe(CO)_3$ revealed²⁸³ that $\nu(CO)$ reflected the inductive effects of the groups R, R¹, R² and R³. An analysis²⁸⁴ of the ¹H NMR spectrum of $(\pi-C_4Ph_2H_2)Fe(CO)_3$ excluded a rectangular geometry for the hydrocarbon ligand.

(CLXXXIII)

(CLXXXIV)

(CLXXXV)

Dehydration of the alcohols CLXXIX and CLXXX afforded²⁸⁵ the extremely stable cationic species CLXXXI and CLXXXII. The molecular structure determination of CLXXXI revealed that the C₄ rings were essentially coplanar with a plane incorporating the exocyclic C atom and hence the main source of stabilisation of the carbonium ion arose from the C₄H₄Fe(CO)₃ groups rather than the phenyl ring. There was no evidence for long-range Fe-exocyclic C atom interaction and the C-C distances within the C₄ rings were essentially equal.

Cycloheptatriene reacted²⁸⁶ with $(\pi$ -C₄H₄)Fe(CO)₃ under UV light giving CLXXXIII, possibly via the intermediate $(\pi$ -C₄H₄)Fe(CO)₂(C₇H₈). Related products CLXXXIV and CLXXXV were obtained from the appropriate olefins, but reaction of *N*-carboxyethylazepine with $(\pi$ -C₄H₄)Fe(CO)₃ gave instead CLXXXVI. Degradation of CLXXXV with Ce⁴⁺ afforded the free olefin which, on UV irradiation in ether, followed by hydrolysis, gave homopentaprismanone.

UV irradation of $(\pi$ -C₄Me₄)Fe(CO)₃ with (CF₃)₂CO gave²⁸⁷ CLXXXVIIa, b and c, whereas with fluoroolefins, *e.g.* (F₃C)CF=CF₂, and with F₃CC=CCF₃, CLXXXVIII and CLXXXIXa or b are formed.

Metal alkyl, aryl, and related species

Sodium amalgam reduction of Fe(salen) (salen = N,N'-ethylenebis(salicylideneiminato) gave²⁸⁸ Na[Fe(salen)] which, on treatment with PhCH₂Cl at -60° afforded the paramagnetic (S = 5/2) Fe(CH₂Ph)(salen). Some reactions of this compound are summarised in Scheme 32. Treatment of Fe(salen) with acetic anhydride gave Fe(COMe)(salen) and acetate ion, but attempts to form this using MeCOCl, or the corresponding methyl via MeI, were unsuccessful. Fe(salen) reacted with $C_6H_{11}NC$ giving Fe(CNC₆H₁₁)(salen). Addition of MeI to trans-Fe(CO)₃(PMe₃)₂ afforded²⁸⁹ Fe(CO)₂(PMe₃)₂(COMe)I which could be decarbonylated to give Fe(CO)₂(PMe₃)₂MeI. Carbonylation of the last afforded the precursor acyl and it was confirmed by IR spectroscopy that methyl migration to the nearest coordinate CO group occurred. The related propionyl bromides and iodides were detected spectroscopically and it was suggested that the reactivity of Fe(CO)₃L₂ towards oxidative acylation depended on the negative charge associated with the CO

ligands and the bulkiness of the L groups; no reaction occurred when L = CO, P(OMe)₃, PPh₃ or PEt₃.

UV irradiation of $Fe(CO)_5$ in the presence of *o*-bromostyrene gave²⁹⁰ a series of complexes as shown in Scheme 33. Reaction of $Fe_2(CO)_9$ with thiobenzophenone

Scheme 33

afforded²⁹¹ CXC (R = Ph, p-MeOC₆H₄ or p-Me₂NC₆H₄) and with adamantanethione CXCI was formed. The dimer of adamantanethione did not react with Fe₂(CO)₉, indicating that CXCI did not result via initial dimerisation of the thicketone and that the extra S atom arose via an intermolecular process.

(CXCI)

(CXCII)

Some reactions of $[azbRu(CO)_3Cl]_2$ (azbH = azobenzene) are summarised²⁹² in Scheme 34. The structure, in the solid state, of the naphthyl complex Ru(Me₂PCH₂-CH₂PMe₂)₂H(C₁₀H₇), CXCII, has been determined²⁹³. In solution this system involved the equilibrium:

 $Ru(diphosphine)_2(C_{10}H_8) \rightleftharpoons Ru(diphosphine)_2H(C_{10}H_7)$

but the latter form was present in the crystal. The Ru–C bond length is somewhat longer than that expected for a Ru-aryl distance. On heating the complex to 150° , naphthalene was lost and the system Ru(Me₂PCH₂CH₂PMe₂)₂ \approx [Ru(Me₂PCH₂CH₂PMe₂)-H{CH₂(Me)PCH₂CH₂PMe₂}] was generated (the latter would not accept C₁₀H₈ to regenerate the naphthalene complex). In a brief mechanistic discussion it was stated as unlikely that the rearrangement of the σ -naphthyl to the naphthalene complex would occur via a π -arene intermediate. However, a small shift of the naphthyl ring could bring one of the aromatic C–C bonds into a coordinating position while the hydride atom could shift onto the ring.

Addition of HX to $M(CO)_3(SP)$ (SP = $o-C_6H_4(CH=CH_2)(PPh_2)$) (M = Fe or Ru) afforded²⁹⁴ the M^{II} complexes, CXCIII, whose structure was confirmed crystallographically

An improved route for the preparation of (fluoroolefin)Fe(CO)₄ has been developed²⁹⁵ using Fe₂(CO)₉. Thermal decomposition led, in many cases, to recovery of the original olefin, but also to the formation of other products (Scheme 35). *trans*-Os(CO)₃ [P(OMe)₃]₂ reacted with F₂C=CFX (X = F, H or Cl) on UV irradiation giving²⁹⁶ CXCIV, whereas

Scheme 35

trans-Os(CO)₃(PMe₂Ph)₂ gave CXCV. Iodination of the phosphine complex gave [Os(CO)₃(PMe₂Ph)₂I]⁺I⁻, and with (CF₃)₂CO, CXCVI was formed. Treatment of Os(CO)₂ [P(OMe)₃]₂(F₃CC=CCF₃) with HCl gave Os(CO)₂ [P(OMe)₃]₂ [C(CF₃)=C-(CF₃)H] Cl (see Scheme 36 for proposed mechanism). UV irradiation of Fe(CO)₅ with

 CF_2Br_2 afforded²⁹⁷ CXCVII, but with BrF_2CCF_2Br , $Fe(CO)_4Br(CF_2CF_2Br)$, $Fe_2(CO)_9$, $FeBr_2$, CO and C_2F_4 were obtained. Reaction with $Br_2C=CF_2$ afforded CXCVIII and $Fe(CO)_4(F_2CCBr_2)$.

Carbone complexes. Treatment of $Fe(CO)_5$ with $LiNEt_2$ afforded²⁹⁸ $Fe(CO)_4$ -[C(OLi)NEt₂] which gave, with Ph₃CCl, Fe₂(CO)₆(CONEt₂)₂, CXCIX. CO was displaced from this by NHEt₂, giving Fe₂(CO)₅(NHEt₂)(CONEt₂)₂. Reaction of $(\pi$ -C₅H₅)M(CO)₂Me (M = Fe or Ru) with PR₃ gave²⁹⁹ $(\pi$ -C₅H₅)M(CO)(PR₃)COMe and protonation (using HCl or HBF₄) or alkylation (R₃O⁺BF₄⁻) afforded $(\pi$ -C₅H₅)M(CO)(PR₃)[C(OR')Me] (R' = H, Me or Et). Borohydride reduction of $(\pi$ -C₅H₅)Fe(CO)(PPh₃)[C(OEt)Me] provided $(\pi$ -C₅H₅)Fe(CO)(PPh₃)[CH(OEt)Me], and treatment with LiMe gave $(\pi$ -C₅H₅)Fe(CO)(PPh₃)COMe, propane and propene.

Synthetic and catalytic processes

The byproducts which are produced in the hydroformylation of olefins to alcohols may be completely suppressed³⁰⁰ using a mixture of $Co_2(CO)_8$, $Fe(CO)_5$ and N-methyl-
pyrrolidine as catalyst. This mixture strongly favoured hydrogenation of the aldehyde intermediates to alcohols so that side reactions of the aldehydes (*e.g.* aldol condensations) were avoided.

The mechanism of ligand exchange, hydrogenation and isomerisation of olefins catalysed by (diene)Fe(CO)₃ or (monoene)Fe(CO)₄ has been elucidated³⁰¹ using methyl sorbate as a model system. The mechanism (Scheme 37) was based on the concept of coordinative unsaturation and provided a common metal complex intermediate to all three processes.

Ethoxycarboxylation of ethyl-acrylate, -crotonate, -3-butenoate, or styrene and α -olefins at 40-70° under CO was effected³⁰² using KHFe(CO)₄ or K₂Fe(CO)₄ and an I₂/EtOH reagent system. The general reactions are summarised in Scheme 38, and a number of differences between this general scheme and that involving cobalt carbonyls were noted. Reduction of acyl halides to aldehydes in high yields using Na₂Fe(CO)₄ occurred³⁰³ via the intermediacy of Na[Fe(CO)₄COR] (R = Ph, p-ClC₆H₄, o-ClC₆H₄, n-Bu or i-Bu).

Metal complexes such as $[(\pi - C_5H_5)Fe(CO)_2]_2$, $Fe_2(CO)_9$, anhydrous FeCl₃, Ru(EtOH)₃Cl₃, Ru(CO)₃(PPh₃)₂, or Ru(PPh₃)₃ Cl₂ catalysed³⁰⁴ the electrocylic ring opening of hexamethyl-Dewar-benzene, although these catalysts were not as effective as those derived from Rh, Ir, Pd or Pt. Treatment of α, α' -dibromoketones with Fe₂(CO)₉, C₄H₆Fe(CO)₃ (best) or Fe(CO)₅ in the presence of 1,3-dienes afforded³⁰⁵ a useful route to troponoid compounds (Scheme 39).

The kinetics and mechanism of the $[(\pi-C_5H_5)Fe(CO)_2]_2$ -catalysed positional isomerism of dichlorobutenes has been investigated³⁰⁶, and a π -allylic intermediate proposed. Small amounts of hydroperoxides greatly accelerated the Ru(PPh₃)₃Cl₂catalysed isomerism of olefins and it seemed likely that Ru(CO)(PPh₃)₂(diolefin)Cl₂ was formed as a result of peroxide action, and that this may have been the active species. This carbonyl complex was an isomerisation catalyst in its own right in the absence of O₂ or ROOH, whereas Ru(PPh₃)₃Cl₂ was essentially inactive unless these reagents were present.

Metathesis of alkyl Grignard reagents with Fe^{II} or Fe^{III} chlorides occurred³⁰⁸ readily in THF, and the alkyliron intermediate afforded a reduced form of soluble iron, together with alkane and alkene. The reaction between RMgX and R'X was catalysed by the soluble iron intermediate and alkyl radicals were formed in a step involving oxidative addition to the reduced iron species (Scheme 40). Reaction of Fe(CH₂CD₂CH₂CH₂CH₂Ph)₃-(solvent)_x with allylbenzene afforded³⁰⁹ PhCH₂CH₂CD=CH₂, PhCH₂CHDCH₂D and PhC(H/D)=C(H/D)CH₂(H/D) in a reaction in which intermolecular β -, H- or D-transfer from the alkyl to the metal and thence to the olefin must have occurred; α -H/D-transfer also occurred.

It has been shown³¹⁰ that the system $Fe(PPh_3)_2Cl_2/i$ -PrMgCl formed a nitrogen complex with N₂ in ether at low temperatures. With HCl this complex effected³¹¹ a ca. 10% conversion of the N₂ to N₂H₄ and with CO, $Fe(CO)_4(PPh_3)$ and $Fe(CO)_3(PPh_3)_2$ were produced. The complex was believed to contain the Fe-N₂-Fe group. Reaction of cyclic or acyclic higher olefins with CO, H₂ and secondary amines afforded³¹² the corresponding aminomethyl cycloalkanes or non-cyclic-alkanes in 90% yields in a process catalysed by $Fe(CO)_5/Rh_2O_3$.

References p. 427

424

References p. 427

(CU = coordinatively unsaturated)

Scheme 37

$$(R^1 = R^2 = Me; R^1 = R^2 = H; R^1 = i - Pr, R^2 = H)$$

Scheme 39

 $\begin{array}{rcl} R'Br + Fe^{0} & \longrightarrow & R' \cdot + \ FeBr \\ R' + \ Fe^{0} & \longrightarrow & R'Fe \\ RMgBr + \ FeBr & \longrightarrow & RFe + \ MgBr_{2} \\ RFe/R'Fe & \longrightarrow & RH, R'H + (R-H), (R'-H) + 2Fe & \longrightarrow \ etc. \end{array}$

Scheme 40

REFERENCES

- 1 R. Cataliotti, A. Foffani and L. Marchetti, Inorg. Chem., 10 (1971) 1594.
- 2 M.S. Foster and J.L. Beauchamp, J. Amer. Chem. Soc., 93 (1971) 4924.
- 3 R.E. Winters and R.W. Kiser, Inorg. Chem., 3 (1964) 699; A. Foffani, S. Pignataro, B. Cantone and F. Grasso, Z. Phys. Chem. (Frankfurt), 47 (1965) 79; G.A. Junk and H.J. Svec, Z. Naturforsch., B23 (1968) 1; G. Distefano, J. Res. Nat. Bur. Stand. Sec. A, 74 (1970) 233.
- 4 B.E. Mann, Chem. Commun., (1971) 1173.
- 5 J. Müller, K. Fenderl and B. Mertschenk, Chem. Ber., 104 (1971) 700.
- 6 W.M. Douglas and J.K. Ruff, J. Chem. Soc., A, (1971) 3558.
- 7 R.B. King and T.F. Korenowski, Inorg. Chem., 10 (1971) 1188.
- 8 P.S. Braterman and W.J. Wallace, J. Organometal. Chem., 30 (1971) C17.
- 9 K. Noack and M. Ruch, J. Organometal. Chem., 17 (1969) 309.
- 10 M.T. Halfpenny and L.M. Venanzi, Inorg. Chim. Acta, 5 (1971) 91.
- 11 M. Poliakoff and J.J. Turner, J. Chem. Soc., A, (1971) 2403.
- 12 M. Poliakoff and J.J. Turner, J. Chem. Soc., A, (1971) 654.
 - 13 C.H. Wei and L.F. Dahl, J. Amer. Chem. Soc., 91 (1969) 3220.
- 14 J.L. Dawes and J.D. Holmes, Inorg. Nucl. Chem. Lett., 7 (1971) 847.
 - 15 A. Herlan, J. Organometal. Chem., 28 (1971) 423.
 - 16 G. Raper and W.S. McDonald, J. Chem. Soc., A, (1971) 3430.
- 17 F.W.B. Einstein, A.M. Pilotti and R. Restivo, Inorg. Chem., 10 (1971) 1947.
 - 18 P.J. Roberts and J. Trotter, J. Chem. Soc., A, (1971) 1479.
 - 19 J.P. Crow and W.R. Cullen, Inorg. Chem., 10 (1971) 1529.
 - W.R. Cullen, D.A. Harbourne, B.V. Liengme and J.R. Sams, *Inorg. Chem.*, 96 (1970) 702;
 8 (1969) 95; W.R. Cullen and D.A. Harbourne, *ibid.*, 9 (1970) 1839.
 - 21 G.O. Evans and R.K. Sheline, Inorg. Chem., 10 (1971) 1598.
- 22 M.I. Bruce, G. Shaw and F.G.A. Stone, Chem. Commun., (1971) 1288.

- 23 M.R. Churchill, J. Wormald, J. Knight and M.J. Mays, J. Amer. Chem. Soc., 93 (1971) 3073.
- 24 U. Anders and W.A.G. Graham, Chem. Commun., (1966) 291.
- 25 E.H. Braye, L.F. Dahl, W. Hübel and D. L. Wampler, J. Amer. Chem. Soc., 84 (1962) 4633.
- 26 C.W. Bradford and R.S. Nyholm, J. Chem. Soc., A, (1971) 2038.
- 27 A.T.T. Hsieh and J. Knight, J. Organometal. Chem., 26 (1971) 125.
- 28 M.R. Churchill and M.V. Veidis, J. Chem. Soc., A, (1971) 2995.
- 29 M.R. Churchill and M.V. Veidis, J. Chem. Soc., A, (1971) 2170; J. Knight and M.J. Mays, J. Chem. Soc., A, (1970) 654.
- 30 C.J. Gilmore and P. Woodward, J. Chem. Soc., A, (1971) 3453.
- 31 D.B.W. Yawney and F.G.A. Stone, J. Chem. Soc., A, (1969) 502.
- 32 H.D. Kaesz, S.A.R. Knox, J.W. Koepke and R.B. Saillant, Chem. Commun., (1971) 477.
- 33 B.F.G. Johnson, R.D. Johnston, J. Lewis, B.H. Robinson and G. Wilkinson, J. Chem. Soc., A, (1968) 2856.
- 34 S.A.R. Knox and H.D. Kaesz, J. Amer. Chem. Soc., 93 (1971) 4594.
- 35 F. Piacenti, M. Bianchi, F. Frediani and E. Benedetti, Inorg. Chem., 10 (1971) 2759.
- 36 J. Knight and M.J. Mays, Chem. Commun., (1971) 62.
- 37 M.R. Churchill and J. Wormald, J. Amer. Chem. Soc., 93 (1971) 5670.
- 38 H. Kisch, J. Organometal. Chem., 30 (1971) C25.
- 39 M. Herberhold and W. Golla, J. Organometal. Chem., 26 (1971) C27.
- 40 N.J. Bremer, A.B. Cutcliffe, M.F. Farona and W.G. Kofron, J. Chem. Soc., A, (1971) 3264.
- 41 H. tom Dieck, I.W. Renk and H.-P. Brehm, Z. Anorg. Allgem. Chem., 379 (1971) 169.
- 42 M.J. Barrow and O.S. Mills, J. Chem. Soc., A, (1971) 864.
- 43 L.F. Dahl, W.R. Costello and R.B. King, J. Amer. Chem. Soc., 90 (1968) 5422.; R.J. Doedens, Inorg. Chem., 7 (1968) 2323.
- 44 M.I. Bruce, M.Z. Iqbal and F.G.A. Stone, J. Organometal. Chem., 31 (1971) 275.
- 45 M. Kilner and C. Midcalf, Chem. Cummun., (1971) 944.
- 46 K. Ogawa, A. Torii, H. Kobayashi-Tamura, T. Watanabe, Y. Yoshida and S. Otsuka, Chem. Commun., (1971).991.
- 47 R.E. Davis, Chem. Cummun., (1968) 248.
- 48 K. Yasufuku and H. Yamazaki, J. Organometal. Chem., 28 (1971) 415.
- 49 P.S. Elmes, P. Leverett and B.O. West, Chem. Commun., (1971) 747; P.S. Elmes and B.O. West, J. Organometal. Chem., 32 (1971) 365.
- 50 A.S. Foust, M.S. Foster and L.F. Dahl, J. Amer. Chem. Soc., 91 (1969) 5633.
- J.A. de Beer, R.J. Haines, R. Greatrex and N.N. Greenwood, J. Chem. Soc., A, (1971) 3271;
 J.A. de Beer, R.J. Haines, R. Greatrex and N.N. Greenwood, J. Organometal. Chem., 27 (1971) C33.
- 52 L. Maresca, F. Greggio, G. Sbrignadello and G. Bor, Inorg. Chim. Acta, 5 (1971) 667.
- 53 J.P. Crow and W.R. Cullen, Can. J. Chem., 49 (1971) 2948.
- 54 E.D. Schermer and W.H. Baddley, J. Organometal. Chem., 30 (1971) 67.
- 55 J. Miller and A.L. Balch, Inorg. Chem., 10 (1971) 1410.
- 56 D.S. Field and M.J. Newlands, J. Organometal. Chem., 27 (1971) 221.
- 57 D.L. Stevenson, C.H. Wei and L.F. Dahl, J. Amer. Chem. Soc., 93 (1971) 6027.
- 58 C.E. Strouse and L.F. Dahl, J. Amer. Chem. Soc., 93 (1971) 6032.
- 59 A.J. Deeming, R. Ettore, B.F.G. Johnson and J. Lewis, J. Chem. Soc., A, (1971) 2701.
- 60 A.J. Deeming, R. Ettore, B.F.G. Johnson and J. Lewis, J. Chem. Soc., A, (1971) 1797.
- 61 W. Jetz and W.A.G. Graham, Inorg. Chem., 10 (1971) 4.
- 62 W. Jetz and W.A.G. Graham, Inorg. Chem., 10 (1971) 1647.
- 63 M.A. Nasta and A.G. MacDiarmid, J. Amer. Chem. Soc., 93 (1971) 2813.
- 64 D. Kummer and J. Furrer, Z. Naturforsch, 26B (1971) 162.
- 65 M.J. Ash, A. Brookes, S.A.R. Knox and F.G.A. Stone, J. Chem. Soc., A, (1971) 458.
- E. Koerner von Gustorf and R. Wagner, Angew. Chem. Int. Edit. Engl., 10 (1971) 910;
 B.L. Barnett and C. Krüger, Angew. Chem. Int. Edit. Engl., 10 (1971) 910.
- 67 A. Brookes, S.A.R. Knox and F.G.A. Stone, J. Chem. Soc., A, (1971) 3469.
- 68 S.R. Stobart, Inorg. Nucl. Chem. Lett., 7 (1971) 219.
- 69 S.A.R. Knox and F.G.A. Stone, J. Chem. Soc., A, (1971) 2874.
- 70 J. Howard and P. Woodward, J. Chem. Soc., A, (1971) 3648.
- 71 T. Takano and Y. Sasaki, Bull. Chem. Soc. Jap., 44 (1971) 431.
- 72 A.T.T. Hsieh, M.J. Mays and R.H. Platt, J. Chem. Soc., A, (1971) 3296.
- 73 F. Galembeck and P. Krumholz, J. Amer. Chem. Soc., 93 (1971) 1909.
- 74 H. Behrens, H.-D. Feilner, E. Lindner and D. Uhlig, Z. Naturforsch, B, 26 (1971) 990.

IRON, RUTHENIUM, AND OSMIUM

.

- 75 M. Aresta, P. Giannoccaro, M. Rossi and A. Sacco, Inorg. Chim. Acta, 5 (1971) 203.
- 76 J.R. Sanders, J. Chem. Soc., A, (1971) 2991.
- 77 E.R. Birnbaum, Inorg. Nucl. Chem. Lett., 7 (1971) 233.
- 78 F.G. Moers, Chem. Commun., (1971) 79.
- 79 S.D. Robinson and M.F. Uttley, Chem. Commun., (1971) 1315.
- 80 J. Chatt, D.P. Melville and R.L. Richards, J. Chem. Soc., A, (1971) 895.
- 81 R. Colton and R.H. Farthing, Aus. J. Chem., 24 (1971) 903.
- H. Behrens, E. Lindner and H.-D. Feilner, Z. Anorg. Allgem. Chem., 385 (1971) 325. 82
- 83 A. Bright, B.E. Mann, C. Masters, B.L. Shaw, R.M. Slade and R.E. Stainbank, J. Chem. Soc., A, (1971) 1826.
- 84 B.R. James and L.D. Markham, Inorg. Nucl. Chem. Lett., 7 (1971) 373.
- 85 M.M. Taqui Khan, R.K. Andal and P.T. Manoharan, Chem. Commun., (1971) 561.
- 86 J. Chatt, G.J. Leigh and A.P. Storace, J. Chem. Soc., A, (1971) 1380.
- 87 P.K. Maples, F. Basolo and R.G. Pearson, Inorg. Chem., 10 (1971) 765.
- 88 J. Chatt, D.P. Melville and R.L. Richards, J. Chem. Soc., A, (1971) 1169.
- 89 D.J. Darensbourg, Inorg. Chem., 10 (1971) 2399.
- 90
- A.L. Balch and Y.S. Sohn, J. Organometal. Chem., 30 (1971) C31. J. Valentine, D. Valentine, Jr., and J.P. Collman, Inorg. Chem., 10 (1971) 219. 91
- 92 E.L. Brown and D.B. Brown, Chem. Commun., (1971) 67.
- 93 M. Tsutsui, D. Ostfeld and L.M. Hoffman, J. Amer. Chem. Soc., 93 (1971) 1820.
- J.W. Faller and J.W. Sibert, J. Organometal. Chem., 31 (1971) C5. 94
- L.H. Pignolet, R.A. Lewis and R.H. Holm, J. Amer. Chem. Soc., 93 (1971) 360. 95
- 96 B.F.G. Johnson, R.D. Johnston, J. Lewis and I.G. Williams, J. Chem. Soc., A, (1971) 689.
- 97 J.G. Bullitt and F.A. Cotton, Inorg. Chim. Acta, 5 (1971) 406.
- 98 E.R. Corey and L.F. Dahl, Inorg. Chem., 1 (1962) 251.
- 99 J.G. Bullitt and F.A. Cotton, Inorg. Chim. Acta, 5 (1971) 637.
- 100 D. Hall, J.H. Slater, B.W. Fitzsimmons and K. Wade, J. Chem. Soc., A, (1971) 800.
- 101 G.M. Bancroft, R.E.B. Garrod and A.G. Maddock, J. Chem. Soc., A, (1971) 3165.
- 102 B.E. Prater, J. Organometal. Chem., 27 (1971) C17.
- 103 B.E. Prater, Inorg. Nucl. Chem. Lett., 7 (1971) 1071.
- B.E. Prater, J. Organometal. Chem., 33 (1971) 215. 104
- 105 D.F. Christian and W.R. Roper, Chem. Commun., (1971) 1271.
- J. Miller, A.L. Balch and J.H. Enemark, J. Amer. Chem. Soc., 93 (1971) 4613. 106
- 107 J.P. Crow, W.R. Cullen, F.G. Herring, J.R. Sams, and R.L. Tapping, Inorg. Chem., 10 (1971) 1616.
- 108 H.G. Metzger and R.D. Feltham, Inorg. Chem., 10 (1971) 951.
- 109 W. Harrison and J. Trotter, J. Chem. Soc., A, (1971) 1542.
- W. Hieber and H. Führling, Z. Anorg. Allgem. Chem., 381 (1971) 235. 110
- 111 C.G. Pierpoint, A. Pucci and R. Eisenberg, J. Amer. Chem. Soc., 93 (1971) 3050.
- 112 R.E. Townsend and K.J. Coskran, Inorg. Chem., 10 (1971) 1661.
- 113 P.G. Douglas, R.D. Feltham and H.G. Metzger, J. Amer. Chem. Soc., 93 (1971) 84.
- 114 B.F.G. Johnson and J.A. Segal, J. Organometal. Chem., 31 (1971) C79.
- 115 J.A. McCleverty and R.N. Whiteley, Chem. Commun., (1971) 1159.
- 116 J.M. Waters and K.R. Whittle, Chem. Commun., (1971) 518.
- 117 C.G. Pierpoint, D.G. van Derveer, W. Durland and R. Eisenberg, J. Amer. Chem. Soc., 92 (1970) 4760.
- 118 A.J. Cleland, S.A. Fieldhouse, B.H. Freeland and R.J. O'Brien, Chem. Commun., (1971) 155.
- 119 M. Casey and A.R. Manning, J. Chem. Soc., A, (1971) 256.
- 120 A.J. Cleland, S.A. Fieldhouse, B.H. Freeland, C.D.M. Mann and R.J. O'Brien, J. Chem. Soc., A, (1971) 736.
- M. Casey and A.R. Manning, J. Chem. Soc., A, (1971) 2989. 121
- 122 W. Kanellakopulos-Drossopulos and D.R. Wiles, Can. J. Chem., 49 (1971) 2977.
- 123 T.J. Marks, J.S. Kristoff, A. Alich and D.F. Shriver, J. Organometal. Chem., 33 (1971) C35.
- 124 D.A. Symon and T.C. Waddington, J. Chem. Soc., A, (1971) 953.
- 125 A. Davison, W. McFarlane, L. Pratt and G. Wilkinson, J. Chem. Soc., (1962) 3653.
- E.O. Fischer and E. Moser, J. Organometal. Chem., 3 (1965) 16; ibid., Z. Anorg. Allgem. 126 Chem., 342 (1966) 156.
- P.V. Balakrishnan and P.M. Maitlis, J. Chem. Soc., A, (1971) 1715. 127
- 128 R.B. King and A. Efraty, J. Amer. Chem. Soc., 93 (1971) 4950.
- E.W. Abel and S. Moorhouse, J. Organometal. Chem., 28 (1971) 211. 129

- 130 D. Cashman and F.-J. Lalor, J. Organometal. Chem., 32 (1971) 351.
- 131 A.R. Manning, J. Chem. Soc., A, (1971) 2321.
- 132 P. McArdle and A.R. Manning, J. Chem. Soc., A, (1971) 717.
- 133 R.B. King, P.N. Kapoor and R.N. Kapoor, Inorg. Chem., 10 (1971) 1841.
- 134 R.B. King, R.N. Kapoor, M.S. Saran, and P.N. Kapoor, Inorg. Chem., 10 (1971) 1851.
- 135 E.C. Johnson, T.J. Meyer and N. Winterton, Inorg. Chem., 10 (1971) 1673.
- 136 M.L. Brown, T.J. Meyer and N. Winterton, Chem. Commun., (1971) 309.
- 137 K. Burger, L. Korecz, P. Mag, U. Belluco and L. Busetto, Inorg. Chim. Acta, 5 (1971) 362.
- 138 M. Graziani, L. Busetto and A. Palazzi, J. Organometal. Chem., 26 (1971) 261.
- 139 L.M. Charley and R.J. Angelici, Inorg. Chem., 10 (1971) 868.
- 140 L. Busetto, M. Graziani and U. Belluco, Inorg. Chem., 10 (1971) 78.
- 141 P.M. Treichel, J.P. Stenson and J.J. Benedict, Inorg. Chem., 10 (1971) 1183.
- 142 A.R. Manning, J. Chem. Soc., A, (1971) 106.
- 143 R.J. Haines and A.L. du Preez, J. Amer. Chem. Soc., 93 (1971) 2820.
- 144 R.J. Haines, A.L. du Preez and I.L. Marais, J. Organometal. Chem., 28 (1971) 405.
- 145 M.L.H. Green and R.N. Whiteley, J. Chem. Soc., A, (1971) 1943.
- 146 W.E. Silverthorn, Chem. Commun., (1971) 1310.
- 147 T. Blackmore, M.I. Bruce and F.G.A. Stone, J. Chem. Soc., A, (1971) 2376.
- 148 A. Davison, J.A. McCleverty and G. Wilkinson, J. Chem. Soc., (1963) 1133.
- 149 R.J. Haines, C.R. Nolte, R. Greatrex and N.N. Greenwood, J. Organometal. Chem., 26 (1971) C45.
- 150 W.R. Cullen, D.J. Patmore, J.R. Sams, M.J. Newlands and L.K. Thompson, Chem. Commun., (1971) 952.
- 151 N.G. Connelly and L.F. Dahl, J. Amer. Chem. Soc., 92 (1970) 7472.
- 152 G. Ferguson, C. Hannaway and K.M.S. Islam, Chem. Commun., (1968) 1165.
- 153 E.D. Schermer and W.H. Baddley, J. Organometal. Chem., 27 (1971) 83.
- 154 J.A. Ferguson and T.J. Meyer, Inorg. Chem., 10 (1971) 1025.
- 155 J.A. Ferguson and T.J. Meyer, Chem. Commun., (1971) 1544.
- 156 J.A. Ferguson and T.J. Meyer, Chem. Commun., (1971) 623.
- 157 W.P. Giering and M. Rosenblum, J. Organometal. Chem., 25 (1970) C71.
- 158 W.P. Giering and M. Rosenblum, Chem. Commun., (1971) 441.
- 159 M.L.H. Green and M.J. Smith, J. Chem. Soc., A, (1971) 3220.
- 160 A.N. Nesmeyanov, M.I. Rybinskaya, L.V. Rybin, V.S. Kaganovich and P.V. Petrovskii, J. Organometal. Chem., 31 (1971) 257.
- 161 W.P. Giering, Chem. Commun., (1971) 4.
- 162 M. Green and D.J. Westlake, J. Chem. Soc., A, (1971) 367.
- 163 J.P. Bibler and A. Wojcicki, Inorg. Chem., 5 (1966) 889; I.S. Butler, F. Basolo and R.G. Pearson, Inorg. Chem., 6 (1967) 2074.
- 164 S.R.Su and A. Wojcicki, J. Organometal. Chem., 27 (1971) 231.
- 165 B.M. Treichel, R.L. Shubkin, K.W. Barnett and D. Reichard, Inorg. Chem., 5 (1966) 1177.
- 166 R.E. Banks, R.N. Haszeldine, M. Lappin and A.B.P. Lever, J. Organometal. Chem., 29 (1971) 427.
- 167 S.C. Cohen, J. Organometal. Chem., 30 (1971) C15.
- 168 S.E. Jacobson, P. Reich-Rohrwig and A. Wojcicki, Chem. Commun., (1971) 1526.
- 169 M.R. Churchill and J. Wormald, Inorg. Chem., 10 (1971) 572.
- 170 G.M. Whitesides and D.J. Boschetto, J. Amer. Chem. Soc., 93 (1971) 1529.
- 171 J.J. Alexander and A. Wojcicki, Inorg. Chim. Acta, 5 (1971) 655.
- 172 J.E. Thomasson, P.W. Robinson, D.A. Ross and A. Wojcicki, Inorg. Chem., 10 (1971) 2130.
- 173 M.R. Churchill and J. Wormald, J. Amer. Chem. Soc., 93 (1971) 354.
- 174 J.-L. Roustan and C. Charrier, Compt. Rend. Acad. Sci., Ser. C, 268 (1969) 2113.
- 175 D.W. Lichtenberg and A. Wojcicki, J. Organometal. Chem., 33 (1971) C77.
- 176 M.I. Bruce and A.D. Redhouse, J. Organometal. Chem., 30 (1971) C78.
- 177 D.A. Ross and A. Wojcicki, Inorg. Chim. Acta, 5 (1971) 6.
- 178 S.R. Su and A. Wojcicki, J. Organometal. Chem., 31 (1971) C34.
- 179 W.P. Giering and M. Rosenblum, J. Amer. Chem. Soc., 93 (1971) 5299.
- 180 L.I. Zakharkin, L.V. Orlova, A.I. Kovredov, L.A. Fedorov and B.V. Loshkin, J. Organometal. Chem., 27 (1971) 95.
- 181 M.I. Bruce, D.N. Sharrocks and F.G.A. Stone, J. Organometal. Chem., 31 (1971) 269.
- 182 D.A. Owen, J.C. Smart, P.M. Garrett and M.F. Hawthorne, J. Amer. Chem. Soc., 93 (1971) 1362.

IRON, RUTHENIUM, AND OSMIUM

- 183 W.H. Knoth, Inorg. Chem., 10 (1971) 598.
- 184 J.N. Francis and M.F. Hawthorne, Inorg. Chem., 10 (1971) 594.
- 185 R.N. Grimes, J. Amer. Chem. Soc., 93 (1971) 261.
- 186 A. Alich, N.J. Nelson and D.F. Shriver, Chem. Commun., (1971) 254.
- 187 A.T.T. Hsieh and M.J. Mays, Inorg. Nucl. Chem. Lett., 7 (1971) 223.
- 188 W. Jetz and W.A.G. Graham, Inorg. Chem., 10 (1971) 1159.
- 189 T.J. Marks and A.M. Seyam, J. Organometal. Chem., 31 (1971) C62.
- 190 J.H. Breckenridge, H.W. Vandenborn and W.E. Harris, Can. J. Chem., 49 (1971) 398.
- 191 A.J. Cleland, S.A. Fieldhouse, B.H. Freeland and R.J. O'Brien, J. Organometal Chem., 32 (1971) C15.
- 192 Yu.A. Ustynyuk and A.V. Kisin, J. Organometal. Chem., 33 (1971) C61.
- 193 H.C. Clark and B.K. Hunter, J. Organometal. Chem., 31 (1971) 227.
- 194 W.R. Cullen, J.R. Sams and J.A.J. Thompson, Inorg. Chem., 10 (1971) 843.
- 195 F.W.B. Einstein and R. Restivo, Inorg. Chim. Acta, 5 (1971) 501.
- 196 D.S. Field and M.J. Newlands, J. Organometal. Chem., 27 (1971) 213.
- 197 B.A. Goodman, R. Greatrex and N.N. Greenwood, J. Chem. Soc., A, (1971) 1868.
- 198 S.R.A. Bird, J.D. Donaldson, A.J.LeC. Holding, B.J. Senior and M.J. Tricker, J. Chem. Soc., A, (1971) 1616.
- 199 R.C. Edmondson, D.S. Field and M.J. Newlands, Can. J. Chem., 49 (1971) 618.
- 200 R. Restivo and R.F. Bryan, J. Chem. Soc., A, (1971) 3364.
- 201 T.A. George, J. Organometal. Chem., 33 (1971) C13.
- 202 S.C. Cohen, S.H. Sage, W.A. Baker, Jr., J.M. Burlitch and R.B. Petersen, J. Organometal. Chem., 27 (1971) C44.
- 203 M.J. Newlands and J.F. Ogilvie, Can. J. Chem., 49 (1971) 363.
- 204 J.Y. Chenard, D. Commercuc and Y. Chauvin, J. Organometal. Chem., 33 (1971) C69.
- 205 M. Herberhold and H. Brabetz, Z. Naturforsch., 26B (1971) 656.
- 206 M.A. Bennett, G.B. Robertson, I.B. Tomkins and P.O. Whimp, Chem. Commun., (1971) 341.
- 207 D. Bright and O.S. Mills, J. Chem. Soc., A, (1971) 1979.
- 208 A. Musco, R. Palumbo and G. Paiaro, Inorg. Chim. Acta, 5 (1971) 157.
- 209 J.M. Landesberg and L. Katz, J. Organometal. Chem., 33 (1971) C15.
- 210 G.F. Emerson, J.E. Mahler and R. Pettit, Chem. and Ind., (1964) 836.
- 211 T.H. Whitesides and R.W. Arhart, J. Amer. Chem. Soc., 93 (1971) 5296.
- 212 C.P. Lillya and R.A. Sahatsian, J. Organometal. Chem., 25 (1970) C67.
- 213 T.S. Sorensen and C.R. Jablonski, J. Organometal. Chem., 25 (1970) C62.
- 214 C.P. Lillya and R.A. Sahatsian, J. Organometal. Chem., 32 (1971) 371.
- 215 G. Maglio, A. Musco and R. Palumbo, J. Organometal. Chem., 32 (1971) 127; G. Maglio, A. Musco, R. Palumbo and A. Sirigu, Chem. Commun., (1971) 100.
- 216 H.W. Whitlock, C. Reich and W.D. Woessner, J. Amer. Chem. Soc., 93 (1971) 2483; H.W. Whitlock and R.L. Markezich, J. Amer. Chem. Soc., 93 (1971) 5290.
- 217 H.W. Whitlock and Y.N. Chuah, J. Amer. Chem. Soc., 87 (1965) 3606.
- 218 R.L. Markezich and H.W. Whitlock, J. Amer. Chem. Soc., 93 (1971) 5291.
- 219 G.E. Herberich and H. Müller, Angew. Chem. Int. Edit. Engl., 10 (1971) 937.
- 220 H. Müller and G.E. Herberich, Chem. Ber., 104 (1971) 2772.
- 221 G.E. Herberich and H. Müller, Chem. Ber., 104 (1971) 2781.
- 222 J.M. Landesberg and J. Sieczkowski, J. Amer. Chem. Soc., 93 (1971) 972.
- 223 Y. Menachem and A. Eisenstadt, J. Organometal. Chem., 33 (1971) C29.
- 224 J. Altman and D. Ginsburg, Tetrahedron, 27 (1971) 93.
- 225 T.A. Stephenson and E. Switkes, Inorg. Nucl. Chem. Lett., 7 (1971) 805.
- 226 M.I. Foreman and D.G. Leppard, J. Organometal. Chem., 31 (1971) C31.
- 227 F.A. Cotton, A.J. Deeming, P.L. Josty, S.S. Ullah, A.J.P. Domingos, B.F.G. Johnson and J. Lewis, J. Amer. Chem. Soc., 93 (1971) 4624; J.P. Candlin, K.K. Joshi and D.T. Thompson. Chem. and Ind., (1966) 1960.
- 228 F.A. Cotton, M.D. LaPrade, B.F.G. Johnson and J. Lewis, J. Amer. Chem. Soc., 93 (1971) 4626.
- 229 H. Maltz and G. Deganello, J. Organometal. Chem., 27 (1971) 383.
- 230 M.G. Waite and G.A. Sim, J. Chem. Soc., A, (1971) 1009.
- 231 M. Cooke, P.T. Draggett, M. Green, B.F.G. Johnson, J. Lewis and D.J. Yarrow, Chem. Commun., (1971) 621.

- 232 B.F.G. Johnson, J. Lewis and G.L.P. Randall, J. Chem. Soc., A, (1971) 422.
- 233 M. Brookhart and E.R. Davis, J. Amer. Chem. Soc., 92 (1970) 7622.
- 234 A.J. Campbell, C.A. Fyfe and E. Maslowsky, Jr., Chem. Commun., (1971) 1032.
- 235 G.T. Rodeheaver, G.C. Farrant and D.F. Hunt, J. Organometal. Chem., 30 (1971) C22.
- 236 B.F.G. Johnson, J. Lewis, P. McArdle and G.L.P. Randall, Chem. Commun., (1971) 177.
- 237 H. Behrens, H.-D. Feilner and E. Lindner, Z. Anorg. Aligem. Chem., 385 (1971) 321.
- 238 F. Faraone, F. Cusmano and R. Pietropaolo, J. Organometal. Chem., 26 (1971) 147.
- 239 E. Koerner von Gustorf, Z. Pfaifer and F.-W. Grevels, Z. Naturforsch., 26B (1971) 66.
- 240 E. Koerner von Gustorf, J. Buchkremer, Z. Pfaifer and F.-W. Grevels, Angew. Chem. Int. Edit. Engl., 10 (1971) 260.
- 241 C. Kruger and Yi-Hung Tsay, J. Organometal. Chem., 33 (1971) 59; Angew. Chem. Int. Edit. Engl., 10 (1971) 261.
- 242 A. Carbonaro and A. Greco, J. Organometal. Chem., 25 (1970) 477.
- 243 M.R. Churchill, F.R. Scholer and J. Wormald, J. Organometal. Chem., 28 (1971) C21.
- 244 M.R. Churchill, K. Gold and P.H. Bird, Inorg. Chem., 8 (1969) 1956.
- 245 K. Nicholas, L.S. Bray, R.E. Davis and R. Pettit, Chem. Commun., (1971) 608.
- 246 O. Gambino, G.A. Vaglio, R.P. Ferrari and G. Cetini, J. Organometal. Chem., 30 (1971) 381.
- 247 D.H. Gibson, R.L. Vonnahme and J.E. McKiernan, Chem. Commun., (1971) 720.
- 248 G. Cardaci and S.M. Murgia, J. Organometal. Chem., 25 (1970) 483.
- 249 A.N. Nesmeyanov, Yu.S. Nekrasov, N.P. Avakyan and I.I. Kritskaya, J. Organometal. Chem., 33 (1971) 375.
- 250 G. Paliani, S.M. Murgia and G. Cardaci, J. Organometal. Chem., 30 (1971) 221.
- 251 G.A. Razuvaev, G.A. Domrachev, O.N. Suvorova and L.G. Agakumova, J. Organometal. Chem., 32 (1971) 113.
- 252 M. Cooke, R.J. Goodfellow, M. Green and G. Parker, J. Chem. Soc., A, (1971) 16.
- 253 E.W. Abel and S. Moorhouse, Angew. Chem. Int. Edit. Engl., 10 (1971) 339.
- 254 F.A. Cotton, B.G. DeBoer and T.J. Marks, J. Amer. Chem. Soc., 93 (1971) 5069.
- 255 G.F. Emerson, J.E. Mahler, R. Pettit and R. Collins, J. Amer. Chem. Soc., 86 (1964) 3590.
- 256 R. Aumann, Angew. Chem. Int. Edit. Engl., 10 (1971) 188.
- 257 R. Aumann, Angew. Chem. Int. Edit. Engl., 10 (1971) 560.
- 258 R. Aumann, Angew. Chem. Int. Edit. Engl., 10 (1971) 189.
- 259 R. Aumann, Angew. Chem. Int. Edit. Engl., 10 (1971) 190.
- 260 R.M. Moriarty, C.-L. Yeh, and K.C. Ramey, J. Amer. Chem. Soc., 93 (1971) 6709.
- 261 M. Green, S. Tolson, J. Weaver, D.C. Wood, and P. Woodward, Chem. Commun., (1971) 222.
- 262 J. Weaver and P. Woodward, J. Chem. Soc., A, (1971) 3521.
- 263 L. Porri, M.C. Gallazzi, A. Columbo and G. Allegra, Tetrahedron Lett., (1965) 4187.
- 264 A. Colombo and G. Allegra, Acta Cryst., B27 (1971) 1653.
- 265 M.I. Bruce, M.A. Cairns, A. Cox, M. Green, M.D.H. Smith and P. Woodward, Chem. Commun., (1970) 735.
- 266 A. Cox and P. Woodward, J. Chem. Soc., A, (1971) 3599.
- 267 P. Janse van Vuuren, R.J. Fletterick, J. Meinwald and R.E. Hughes, J. Amer. Chem. Soc., 93 (1971) 4394.
- 268 L.A.P. Kane-Maguire, J. Chem. Soc., A, (1971) 1602.
- 269 T.H. Whitesides and R.A. Budnik, Chem. Commun., (1971) 1514.
- 270 H. Maltz and B.A. Kelly, Chem. Commun., (1971) 1390.
- 271 R.B. King and M.B. Bisnette, Inorg. Chem., 3 (1964) 785.
- 272 S. Otsuka, A. Nakamura and K. Tani, J. Chem. Soc., A, (1971) 154.
- A. Nakamura, P.J. Kim, and N. Hagihara, J. Organometal. Chem., 3 (1965) 7; A. Nakamura and N. Hagihara, *ibid.*, 3 (1965) 480; A. Nakamura, Bull. Chem. Soc. Jap., 39 (1966) 543; R. Ben-Shoshan and R. Pettit, Chem. Commun., (1968) 247.
- 274 A. Bond, M. Green, B. Lewis and S.F.W. Lowrie, Chem. Commun., (1971) 1230.
- 275 I.I. Kritskaya, G.P. Zol'nikova, I.F. Leshcheva, Yu.A. Ustynyuk and A.N. Nesmeyanov, J. Organometal. Chem., 30 (1971) 103.
- 276 C.C. Lee, R.G. Sutherland and B.J. Thomson, Chem. Commun., (1971) 1071.
- 277 J.F. Helling, S.L. Rice, D.M. Braitsch and T. Mayer, Chem. Commun., (1971) 930.
- 278 J.F. Helling and D.M. Braitsch, J. Amer. Chem. Soc., 92 (1970) 7207.
- 279 J.F. Helling and D.M. Braitsch, J. Amer. Chem. Soc., 92 (1970) 7209.
- 280 G. Hüttner, S. Lange and E.O. Fischer, Angew. Chem. Int. Edit. Engl., 10 (1971) 556.
- 281 H.A. Brüne, H.P. Wolff and H. Hüther, Z. Naturforsch., 26B (1971) 765.
- 282 D.F. Pollock and P.M. Maitlis, J. Organometal. Chem., 26 (1971) 407.

- 283 H.A. Brune and H.P. Wolff, Z. Naturforsch., B, 26 (1971) 68.
- 284 H.A. Brune, H. Hüther and H. Hanebeck, Z. Naturforsch., B, 26 (1971) 570.
- 285 R.E. Davis, H.D. Simpson, N. Grice and R. Pettit, J. Amer. Chem. Soc., 93 (1971) 6688.
- 286 J.S. Ward and R.D. Pettit, J. Amer. Chem. Soc., 93 (1971) 262.
- 287 A. Bond and M. Green, Chem. Commun., (1971) 12.
- 288 C. Floriani and F. Calderazzo, J. Chem. Soc., A, (1971) 3665.
- 289 M. Pankowski and M. Bigorgne, J. Organometal. Chem., 30 (1971) 227.
- 290 R. Victor, R. Ben-Shoshan and S. Sarel, Chem. Commun., (1971) 1241.
- 291 H. Alper and A.S.K. Chan, Chem. Commun., (1971) 1203.
- 292 M.I. Bruce, M.Z. Iqbal and F.G.A. Stone, J. Chem. Soc., A, (1971) 2820.
- 293 U.A. Gregory, S.D. Ibekwe, B.T. Kilbourn and D.R. Russell, J. Chem. Soc., A, (1971) 1118.
- 294 M.A. Bennett, G.B. Robertson, I.B. Tomkins and P.O. Whimp, J. Organometal. Chem., 32 (1971) C19.
- 295 R. Fields, G.L. Goodwin and R.N. Haszeldine, J. Organometal. Chem., 26 (1971) C70.
- 296 M. Cooke, M. Green and T.A. Kuc, J. Chem. Soc., A, (1971) 1200.
- 297 F. Seel and G.-V. Röschenthaler, Z. Anorg. Allgem. Chem., 386 (1971) 297.
- 298 E.O. Fischer and V. Kiener, J. Organometal. Chem., 27 (1971) C56.
- 299 M.L.H. Green, L.C. Mitchard and M.G. Swanwick, J. Chem. Soc., A, (1971) 794.
- 300 B. Fell, J. Shanshool and F. Asinger, J. Organometal. Chem., 33 (1971) 69.
- 301 M. Cais and N. Maoz, J. Chem. Soc., A, (1971) 1811.
- 302 H. Masada, M. Mizuno, S. Suga, Y. Watanabe and Y. Takegami, Bull. Chem. Soc. Jap., 43 (1970) 3824.
- 303 Y. Watanabe, Y. Mitsudo, M. Tanaka, K. Yamamoto, T. Okajima and Y. Takegami, Bull. Chem. Soc. Jap., 44 (1971) 2569.
- 304 C.J. Attridge and S.J. Maddock, J. Organometal. Chem., 26 (1971) C65.
- 305 R. Noyori, S. Makino and H. Takaya, J. Amer. Chem. Soc., 93 (1971) 1272.
- 306 G. Henrici-Olivé and S. Olivé, J. Organometal. Chem., 29 (1971) 307.
- 307 J.E. Lyons, Chem. Commun., (1971 562 and J. Org. Chem., 36 (1971) 2497.
- 308 M. Tamura and J. Kochi, J. Amer. Chem. Soc., 93 (1971) 1487, and J. Organometal. Chem., 31 (1971) 289.
- 309 R.P.A. Sneeden and H.H. Zeiss, J. Organometal. Chem., 27 (1971) 89.
- 310 M.O. Broitman, N.T. Denisov, N.I. Shuvalova and A.E. Shilov, Kin. i Katal., 12 (1971) 504.
- 311 Yu.G. Borodko, M.O. Broitman, L.M. Kachapino, A.E. Shilov and L.Yu. Ukhin, Chem. Commun., (1971) 1185.
- 312 A.F.M. Iqbal, Helv. Chim. Acta, 54 (1971) 1440.